. Earth Science News .
TECTONICS
Flow in the asthenosphere drags tectonic plates along
by Staff Writers
Houston TX (SPX) May 30, 2018

A 3D computer model of the asthenosphere by Rice University geophysicists finds that the convective cycling and pressure-driven flow can sometimes cause the asthenosphere to move even faster than the tectonic plates riding atop it. This 2D slice of data from the model shows stronger, faster moving sections of the asthenosphere (yellow) bracketed above and below by slower, more fluid regions (orange).

New simulations of Earth's asthenosphere find that convective cycling and pressure-driven flow can sometimes cause the planet's most fluid layer of mantle to move even faster than the tectonic plates that ride atop it.

That's one conclusion from a new study by Rice University geophysicists who modeled flow in the 100-mile-thick layer of mantle that begins at the base of Earth's tectonic plates, or lithosphere.

The study, which is available online in the journal Earth and Planetary Science Letters, takes aim at a much-debated question in geophysics: What drives the movement of Earth's tectonic plates, the 57 interlocking slabs of the lithosphere that slip, grind and bump against one another in a seismic dance that causes earthquakes, builds continents and gradually reshapes the planet's surface every few million years?

"Tectonic plates float on top of the asthenosphere, and the leading theory for the past 40 years is that the lithosphere moves independently of the asthenosphere, and the asthenosphere only moves because the plates are dragging it along," said graduate student Alana Semple, lead co-author of the new study.

"Detailed observations of the asthenosphere from a Lamont research group returned a more nuanced picture and suggested, among other things, that the asthenosphere has a constant speed at its center but is changing speeds at its top and base, and that it sometimes appears to flow in a different direction than the lithosphere."

Computational modeling carried out at Rice offers a theoretical framework that can explain these puzzling observations, said Adrian Lenardic, a study co-author and professor of Earth, environmental and planetary sciences at Rice.

"We've shown how these situations can occur through a combination of plate- and pressure-driven flow in the asthenosphere," he said.

"The key was realizing that a theory developed by former Rice postdoc Tobias Hoink had the potential to explain the Lamont observations if a more accurate representation of the asthenosphere's viscosity was allowed for.

"Alana's numerical simulations incorporated that type of viscosity and showed that the modified model could explain the new observations. In the process, this offered a new way of thinking about the relationship between the lithosphere and asthenosphere."

Though the asthenosphere is made of rock, it is under intense pressure that can cause its contents to flow.

"Thermal convection in Earth's mantle generates dynamic pressure variations," Semple said.

"The weakness of the asthenosphere, relative to tectonic plates above, allows it to respond differently to the pressure variations. Our models show how this can lead to asthenosphere velocities that exceed those of plates above. The models also show how flow in the asthenosphere can be offset from that of plates, in line with the observations from the Lamont group"

The oceanic lithosphere is formed at mid-ocean ridges and flows toward subduction zones where one tectonic plate slides beneath another. In the process, the lithosphere cools and heat from Earth's interior is transferred to its surface. Subduction recycles cooler lithospheric material into the mantle, and the cooling currents flow back into the deep interior.

Semple's 3D model simulates both this convective cycle and the asthenosphere. She credited Rice's Center for Research Computing (CRC) for its help running simulations - some of which took as long as six weeks - on Rice's DAVinCI supercomputer.

Semple said the simulations show how convective cycling and pressure-driven flow can drive tectonic movement.

"Our paper suggests that pressure-driven flow in the asthenosphere can contribute to the motion of tectonic plates by dragging plates along with it," she said.

"A notable contribution does come from 'slab-pull,' a gravity-driven process that pulls plates toward subduction zones. Slab-pull can still be the dominant process that moves plates, but our models show that asthenosphere flow provides a more significant contribution to plate movement than previously thought."

Research paper


Related Links
Rice University
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECTONICS
Cold production of new seafloor
Kiel, Germany (SPX) May 25, 2018
A mountain range with a total length of 65,000 kilometers runs through all the oceans. It marks the boundaries of tectonic plates. Through the gap between the plates material from the Earth's interior emerges, forming new seafloor, building up the submarine mountains and spreading the plates apart. Very often, these mid-ocean ridges are described as a huge, elongated volcano. But this image is only partly correct, because the material forming the new seafloor is not always magmatic. At some spread ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
China floods to hit US economy: Climate effects through trade chains

'Our families would be killed': Rohingya brace for monsoon

Navy captain accused in deadly Tunisia migrant boat sinking

Arkema's Texas plant unprepared for Harvey floods, inquiry finds

TECTONICS
Astonishing effect enables better palladium catalysts

Focus on space debris

Aireon System Deployment Continues with Sixth Successful Launch

Glass-forming ability: fundamental understanding leading to smart design

TECTONICS
Study reveals how high-latitude corals cope with the cold

Rise and fall of the Great Barrier Reef

Researchers identify bacteria and viruses ejected from the ocean

New robot concept uses responsive materials to swim through water

TECTONICS
Phosphorus nutrition can hasten plant and microbe growth in arid, high elevation sites

Canada, Denmark seek to settle Arctic island dispute

A promising target in the quest for a 1-million-year-old Antarctic ice core

Remote camera network tracks Antarctic species at low cost

TECTONICS
Virtual safe space to help bumblebees

Thailand stops short of banning hazardous weedkillers

Long-term study shows crop rotation decreases greenhouse gas emissions

'Unprecedented' hailstorm hits Bordeaux winegrowers

TECTONICS
Cyclone Mekunu intensifies as it advances on Oman

Gemini Observatory Cloud Camera Captures Volcano's Dramatic Glow

Cyclone death toll in Oman, Yemen rises to 11: authorities

Hawaii volcanic smog blankets Marshall Islands

TECTONICS
China, Russia rise in C. Africa as Western influence shrinks

China, Burkina Faso establish ties following Taiwan snub

France to pump 65 million euros into African startups

12 civilians killed in Mali market attack

TECTONICS
Chimpanzee calls differ according to context

Prehistoric people also likely disrupted by environmental change

'Uniquely human' muscles have been discovered in apes

Trait tied to autism may explain emergence of realistic art









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.