. Earth Science News .
Food-Crop Yields In Future Greenhouse-Gas Conditions Lower Than Expected

The tests provided projections for maize, rice (pictured), sorghum, soybean and wheat - the world's most important crops in terms of global grain production.
by Staff Writers
Champaign IL (SPX) Aug 08, 2006
Open-air field trials involving five major food crops grown under carbon-dioxide levels projected for the future are harvesting dramatically less bounty than those raised in earlier greenhouse and other enclosed test conditions - and scientists warn that global food supplies could be at risk without changes in production strategies.

The new findings are based on on-going open-air research at the University of Illinois at Urbana-Champaign and results gleaned from five other temperate-climate locations around the world. According to the analysis, published in the June 30 issue of the journal Science, crop yields are running at about 50 percent below conclusions drawn previously from enclosed test conditions.

Results from the open-field experiments, using Free-Air Concentration Enrichment (FACE) technology, "indicate a much smaller CO2 fertilization effect on yield than currently assumed for C3 crops, such as rice, wheat and soybeans, and possibly little or no stimulation for C4 crops that include maize and sorghum," said Stephen P. Long, a U. of I. plant biologist and crop scientist.

FACE technology, such as the SoyFACE project at Illinois, allows researchers to grow crops in open-air fields, with elevated levels of carbon dioxide simulating the composition of the atmosphere projected for the year 2050. SoyFACE has added a unique element by introducing surface-level ozone, which also is rising. Ozone is toxic to plants. SoyFACE is the first facility in the world to test both the effects of future ozone and CO2 levels on crops in the open air.

Older, closed-condition studies occurred in greenhouses, controlled environmental chambers and transparent field chambers, in which carbon dioxide or ozone were easily retained and controlled.

Such tests provided projections for maize, rice, sorghum, soybean and wheat - the world's most important crops in terms of global grain production. By 2050 carbon dioxide levels may be about 1.5 times greater than the current 380 parts per million, while daytime ozone levels during the growing season could peak on average at 80 parts per billion (now 60 parts per billion).

Older studies, as reviewed by the Intergovernmental Panel on Climate Change, suggest that increased soil temperature and decreased soil moisture, which would reduce crop yields, likely will be offset in C3 crops by the fertilization effect of rising CO2, primarily because CO2 increases photosynthesis and decreases crop water use.

Although more than 340 independent chamber studies have been analyzed to project yields under rising CO2 levels, most plants grown in enclosures can differ greatly from those grown in farm fields, Long said. FACE has been the only technology that has tested effects in real-world situations, and, to date, for each crop tested yields have been "well below (about half) the value predicted from chambers," the authors reported. The results encompassed grain yield, total biomass and effects on photosynthesis.

The FACE data came from experimental wheat and sorghum fields at Maricopa, Ariz.; grasslands at Eschikon, Switzerland; managed pasture at Bulls, New Zealand; rice at Shizukuishi, Japan; and soybean and corn crops at Illinois. In three key production measures, involving four crops, the authors wrote, just one of 12 factors scrutinized is not lower than chamber equivalents, Long said.

"The FACE experiments clearly show that much lower CO2 fertilization factors should be used in model projections of future yields," the researchers said. They also called for research to examine simultaneous changes in CO2, O3, temperature and soil moisture."

While projections to 2050 may be too far out for commercial considerations, they added, "it must not be seen as too far in the future for public sector research and development, given the long lead times that may be needed to avoid global food shortage."

Related Links
University of Illinois at Urbana-Champaign

Acid rain in China threatening food chain
Beijing, Aug 6, 2006
China's sharp rise in sulphur dioxide emissions, the main component of acid rain, is ruining the nation's croplands and threatening the food chain in rivers and lakes, experts said Sunday. The emissions, largely caused by burning coal to sate China's booming appetite for electricity and by vehicle exhaust, are further exacerbating severe ecological degradation in the world's most populous nation, they said.







  • South Korean Emergency Aid Heads For North
  • New System Provides Power, Water, Refrigeration From One Source
  • Munich Re Fighting Fit For Hurricane Season After Good First Half
  • San Diego Supercomputer Team Backs Firefighters in Recent "Horse" Wildfires

  • Trees Appear To Respond Slower To Climate Change Than Previously Thought
  • Shoot Up And Cool Down
  • Cosmic Dust In Ice Cores Sheds Light On Earth's Past Climate
  • Pine Plantations May Be One Culprit In Increasing Carbon Dioxide Levels

  • CloudSat Captures Hurricane Daniel's Transformation
  • Senators Collins And Lieberman Write To Griffin Over NASA Dumping 'Mission To Earth'
  • Google Earth Impacts Science
  • Satellite Data Reveal Gravity Change From Sumatran Earthquake

  • Korean Scientist Makes Crude Oil Into Fuel
  • BP Pipeline Leak Closes Down Biggest US Oilfield
  • British high street targets energy-conscious consumers
  • Unaxis drives back into profit on solar panels and microchips

  • Einstein Researchers Find Key to Unlocking World's Deadliest Malaria Parasite
  • Human Behavior Changes The Number Of Strains Of Infectious Diseases
  • The Next Dilemma Stemming From The Global Aids Epidemic
  • Scientists Develop SARS Vaccine with Common Poultry Virus

  • Worker Ants Store Fat To Share With Colony Members During Times Of Need
  • Evidence Of Rapid Evolution Is Found At The Tips Of Chromosomes
  • Thieves Promote Stable Coexistence Among Desert Rodents
  • Apes - Not Monkeys - Ace IQ Tests

  • Landslides Threaten Planned Pipeline In Russia
  • At An Underwater Volcano, Evidence Of Man's Environmental Impact
  • UN calls for action after Lebanese slick spreads to Syria
  • Pipeline Leak In West Russia Could Poses Serious Threat

  • Scientists Develop Artwork That Changes To Suit Your Mood
  • Human Tampering Threatens Planet's Life-Sustaining Surface
  • Germans Set Up An Apartheid-Like Society In Saxon Britain
  • Present-Day Non-Human Primates May Be Linchpin In Evolution Of Language

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement