|
. | . |
|
by Staff Writers Berkeley CA (SPX) May 08, 2015
A detailed study of marine animals that died out over the past 23 million years can help identify which animals and ocean ecosystems may be most at risk of extinction today, according to an international team of paleontologists and ecologists. In a paper to be published in the journal Science, researchers from the University of California, Berkeley, and other institutions report that worldwide patterns of extinction remained remarkably similar over this period, with the same groups of animals showing similar rates of extinction throughout and with a consistent set of characteristics associated with elevated extinction risk. The researchers then used these past global extinction patterns as a baseline to predict which ocean areas and marine organisms would be most at risk today without the added threat of human-caused habitat destruction, overfishing, pollution and ocean acidification. Finally, the authors combined this natural or 'intrinsic' extinction risk with current threats from humans and climate change to obtain a global map of potential future hotspots of extinction risk. "Our goal was to diagnose which species are vulnerable in the modern world, using the past as a guide," said lead author Seth Finnegan, an assistant professor of integrative biology at UC Berkeley. "We believe the past can inform the way we plan our conservation efforts. However, there is a lot more work that needs to be done to understand the causes underlying these patterns and their policy implications." "It's very difficult to detect extinctions in the modern oceans, but fossils can help fill in the gaps," added co-author and conservation biologist Sean Anderson, a postdoctoral researcher at Simon Fraser University in Burnaby, British Columbia. "Our findings can help prioritize areas and species that might be at greater risk of extinction and that might require extra attention, conservation or management."
Marine extinctions with and without humans The authors used these patterns from the fossil record to assess the natural extinction risk of animals living in the oceans today. Comparing these patterns with areas where human activities such as fishing impact the oceans revealed areas that may be particularly sensitive. These areas included high- biodiversity regions of the tropics such as the Indo-Pacific and the Caribbean, as well as regions such as Antarctica that harbor many unique species. "The implications of these patterns for the future of coastal marine ecosystems will depend on how natural risk and current threats interact," said co-author Paul Harnik, an assistant professor of geosciences at Franklin and Marshall College in Lancaster, Pennsylvania. "By understanding these patterns in the past, we hope to provide a framework for understanding global change."
Bridging the gap The group focused on the past 23 million years when the planet looked largely the same as today: The continents were arranged similarly, and most of the same major taxonomic groups, from whales and seals to clams, snails and sea urchins, existed. However, this time interval encompassed dramatic changes in Earth's climate. The group determined that patterns of extinction risk were consistent despite this variability - suggesting that the fossil record can provide a valuable pre-human baseline for considering current threats to marine biodiversity. "Climate change and human activities are impacting groups of animals that have a long history, and studying that history can help us condition our expectations for how they might respond today," Finnegan said. Other co-authors are from the United Nations Environment Program World Conservation Monitoring Center and the Computational Science Laboratory of Microsoft Research in Cambridge, the United Kingdom; Dalhousie University in Nova Scotia, Canada; the University of Massachusetts in Boston; Mount Allison University in New Brunswick, Canada; the University of Oslo in Norway; the College of William and Mary in Williamsburg, Virginia; the University of Washington in Seattle; the Smithsonian Tropical Research Institute in Panama; and the University of Queensland in St. Lucia, Australia.
Related Links University of California - Berkeley Darwin Today At TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |