. | . |
Global warming accelerates the water cycle, with relevant climatic consequences by Staff Writers Barcelona, Spain (SPX) May 01, 2022
Researchers at the Institut de Ciencies del Mar (ICM-CSIC) in Barcelona have found that global warming is accelerating the water cycle, which could have significant consequences on the global climate system, according to an article published recently in the journal Scientific Reports. This acceleration of the water cycle is caused by an increase in the evaporation of water from the seas and oceans resulting from the rise in temperature. As a result, more water is circulating in the atmosphere in its vapour form, 90 per cent of which will eventually precipitate back into the sea, while the remaining 10 per cent will precipitate over the continent. "The acceleration of the water cycle has implications both at the ocean and on the continent, where storms could become increasingly intense. This higher amount of water circulating in the atmosphere could also explain the increase in rainfall that is being detected in some polar areas, where the fact that it is raining instead of snowing is speeding up the melting", explains Estrella Olmedo, the leading author of the study. The work also shows that the decrease in the wind in some areas of the ocean, which favours stratification of the water column, i.e. water not mixing in the vertical direction, could also be contributing to the acceleration of the water cycle. "Where the wind is no longer so strong, the surface water warms up, but does not exchange heat with the water below, allowing the surface to become more saline than the lower layers and enabling the effect of evaporation to be observed with satellite measurements", points out Antonio Turiel, also an author of the study. In this sense, Turiel adds that "this tells us that the atmosphere and the ocean interact in a stronger way than we imagined, with important consequences for the continental and polar areas".
Satellites are key for oceanographic studies "We have been able to see that surface salinity is showing an intensification of the water cycle that subsurface salinity does not. Specifically, in the Pacific we have seen that surface salinity decreases more slowly than subsurface salinity and, in this same region, we have observed an increase in sea surface temperature and a decrease in the intensity of winds and the depth of the mixing layer", details Olmedo. These findings are the result of the use of algorithms and other data analysis products that the Barcelona Expert Center (BEC), attached to the ICM-CSIC, has been generating in the recent years from the SMOS space mission of the European Space Agency (ESA), designed to acquire observations of ocean salinity, which is essential for understanding ocean circulation, one of the key factors in understanding global climate. This circulation basically depends on the water density, which is determined by its temperature and salinity. Therefore, changes in these two parameters, however small they may be, can end up having important consequences on the global climate, which makes it key to monitor them closely. For this, Turiel concludes that "ocean models must standardise the assimilation of satellite salinity data, since the information they provide complements in situ data, and this is crucial, especially at the current time of climate crisis, where changes are occurring much faster than before".
Research Report:Computational simulation/modeling
West Africa bloc ECOWAS agrees climate strategy Accra (AFP) April 29, 2022 The West African regional bloc ECOWAS on Friday approved a regional strategy to improve cooperation in the fight against climate change over the next decade. Leaders of the bloc have agreed with the European Union to spend $294 billion in the next 10 years to address climate change problems such as land erosion. "Between 2020 and 2030, we've estimated about $294 billion to address climate change issues," ECOWAS commissioner in charge of agriculture, environment and water resources Sekou Sangar ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |