. | . |
Gulf Stream eddies as a source of iron by Staff Writers Zurich, Switzerland (SPX) Jul 04, 2018
Minuscule sea creatures like cyanobacteria need large amounts of trace elements such as zinc and iron. In the world's oceans, however, the latter is often in short supply. This is true of large stretches of the North Atlantic, especially the large North Atlantic Gyre between North America, the Canary Islands, the Caribbean and the Gulf Stream. Up until now, researchers have usually assumed that dust from the Sahara was the only significant source of iron to the North Atlantic Gyre. Now ETH geochemists Tim Conway and Gregory de Souza have discovered another source: cold, iron-rich seawater from the North American continental slope, which is captured by meanders of the Gulf Stream and carried out to the North Atlantic Gyre. Their study was recently published in the journal Nature Geoscience.
Eddies on the surface "The amount of iron from this source is probably of the same order of magnitude as that delivered by Saharan dust, since Gulf Stream eddies are constantly forming, while dust storms are usually just brief events," says de Souza, Senior Assistant at the Institute of Geochemistry and Petrology at ETH Zurich.
Pure curiosity: "Stumbling" across iron-rich water At one location close to the Gulf Stream, the ETH researchers noticed elevated iron concentrations inear the surface of the otherwise iron-poor North Atlantic Gyre, reaching values similar to those of coastal water. They realised that the research vessel had, entirely by chance, sampled a Gulf Stream eddy transporting iron into the nutrient-poor waters of the North Atlantic.
Quantitative estimates difficult From her analysis of the satellite data, Palter determined that on average, seven to eight eddies split off from the Gulf Stream every year. Based on this, the three researchers were able to estimate the amount of iron they carry, which they figure to be probably about 15 percent of the iron delivered by Saharan dust. However, it is difficult to compare the two sources, since the data are insufficient and somewhat contradictory, as de Souza says: "Above all it isn't clear how much iron from Saharan dust actually dissolves in seawater." The proportion of iron delivered to the North Atlantic Gyre by the Gulf Stream eddies could just as well be anywhere from 3 to 75 percent of that from dust. This wide range makes it impossible to more precisely pinpoint the relative contribution of iron from Gulf Stream eddies compared to that from Saharan dust. "We need data with higher spatial resolution if we are to calculate the amount of iron from the eddies more accurately," de Souza says, "and we also need a better understanding of which parameters determine the solubility of iron in dust delivered to the ocean surface."
Trace metals drive biological activity When ocean circulation patterns change, the distributions of trace elements and nutrients change as well. "That's why it's important for us to know where the iron, zinc and other metals are coming from," says de Souza. He acknowledges that climate change could impact the paths of major ocean currents: "At present, we don't know enough to be able to predict what effect this could have on trace metals, and thus on productivity in the oceans."
Research Report: Conway TM, Palter JB, de Souza GF. Gulf Stream rings as a source of iron to the North Atlantic subtropical gyre. Nature Geoscience, published online 2nd July 2018, doi: 10.1038/s41561-018-0162-0
Great white spotted off Spain in decades first: marine group Madrid (AFP) June 30, 2018 A great white shark was spotted in waters off Spain's Balearic Islands this week in what is the first such sighting by scientists in at least 30 years, a marine conservation group said Saturday. The Alnitak group captured footage of the shark, which it said was five metres (16 feet) long, on Thursday in the seas off Cabrera island and followed it for over an hour, it said on its Facebook page, posting a picture. "In the past years there have been possible unconfirmed sightings and various rumour ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |