. | . |
How Life Shatters The Chemistry Mirror
for Astrobiology Magazine Moffett Field CA (SPX) Apr 17, 2009 All of us are left-handed. At least, the bits that make up our proteins are. This is surprising since Nature is predominantly ambidextrous when it comes to assembling these molecules from scratch. Some scientists argue that left-handedness was handed down to us from space, but others say it just happened by chance in some little nook on the primordial Earth. Handedness, or as it's technically called, "chirality," occurs in certain molecules that come in two varieties that are mirror images of each other, like right- and left-handed gloves. In living creatures, amino acids - the building blocks of proteins - are almost exclusively left-handed. Whereas, the sugars that make up the helical backbone of DNA and RNA are all right-handed. (Scientists tend to focus on the left-handed amino acids because they are seasier to analyze than the right-handed sugars.) Life's exclusive use of one hand over the other is referred to as homochirality. Its origin is a mystery, since when chemists brew up amino acids and sugars in the lab the results are an equal mixture of both hands (unless special chemical templates are used). Finding out where homochirality comes from could tell us which chemical reactions sparked the creation of life on our planet. It might also tell us what we should expect from life on other planets. Will they be left-handed just like us?
Chiral world Indeed, drug companies spend more than $100 billion per year to ensure that drugs contain pure chiral molecules, says Robert Hazen of the Carnegie Institution of Washington. "Chirality is an essential, diagnostic characteristic of cellular life. But how did this selectivity emerge in the seemingly random prebiotic world?" Hazen wonders. Louis Pasteur was the first to recognize the handedness of biomolecules more than 150 years ago. Since then, many different theories have been put forth to try to explain its emergence. Some scientists have suspected that homochirality was a by-product of life. In this case, the first organisms would have been a mixture of different handed molecules, but at some point being purely left-handed afforded some evolutionary advantage. However, most scientists now believe that homochirality is a precondition for life. They say that the first complex molecular structures (e.g. the sugar-based helices of DNA and the amino acid sheets found in proteins) could only have emerged from a chemical soup in which one hand dominated. "If you pulled one hundred gloves from a drawer with only left-handed or only right-handed gloves and arranged them in sequence, you would get a well-defined structure with the homochiral ones," says chemist Ronald Breslow from Columbia University. But you'd get a terrible mess, he says, if you tried to arrange the same sequence from a drawer with both left- and right-handed gloves randomly mixed together. This implies that the origin of homochirality came before the origin of life. Uncovering how Nature purified the handedness of life's raw ingredients should bring us closer to understanding how those ingredients came together to form life.
Universal lefty The reason is that particle physics is left-handed in its own way. The electrons emitted during certain radioactive decays all spin in a left-handed fashion. The force that controls these decays, the so-called weak force, is thought to have an influence on the formation of biomolecules. However, the effect is extremely tiny: the predicted excess of left-handed amino acids due to the weak force is less than one out of a million billion. "The energies involved in any global-scale or universal-scale chiral influence are very small," Hazen says. Local favorite Hazen and others suspect that much greater influences work on the local scale to tip the hand of chemistry in one direction or another. Although chemical reactions tend to make left and right handed molecules in equal amounts, there are self-replicating reaction cycles that can create a disparity. For example, a left-handed amino acid can help catalyze a series of chemical steps that results in a copy of itself. If this is repeated over and over, the left-handed species can dominate the right-handed one. This so-called autocatalysis could have occurred in various small pools or puddles on the primordial Earth. Some spots would have ended up predominantly left-handed, while others would have been more right-handed. A similar idea is that left and right handed molecules were segregated into separate "micro-pools" by mineral surfaces. Hazen and his colleagues have shown that calcite - a common crystal found in a wide range of rock types - is chiral selective. In other words, some calcite surfaces adsorb predominantly left-handed amino acids, while others favor right-handed ones. "In the process, we find the molecules are selected, concentrated and organized on the surfaces in ways that might lead to additional molecular assembly," Hazen says.Although Hazen's team has yet to show it, amino acids may be able to bond together on crystal faces as a first step towards protein formation. If this is the case, then life may have emerged from a single left-handed crystal face. Assuming this localized chemistry is the whole story, then possible life on Mars or other nearby worlds will just as likely be right-handed as left.
Meteoric fall The evidence for this is in a small number of meteorites found to have an excess of left-handed amino acids over right-handed ones. "We're still in the dark how it happened," says Sandra Pizzarello from Arizona State University, who has analyzed many of the meteorite samples. The most popular notion is that amino acids formed on interstellar dust grains that were subsequently exposed to circularly polarized light, which destroyed more of the right-handed than left-handed amino acids. The problem is finding a source of circularly polarized light (candidates include neutron stars and molecular clouds). Whatever the cause of the left-handed excess, the fact that the meteorites match the chiral preference of life on our planet cannot be a mere coincidence, according to many researchers. "Various other theories [for the origin of homochirality] are certainly less attractive once we know that chirality is being delivered to Earth by some meteorites," Breslow says. One concern, however, is that the amino acids in the meteorites are not the ones used by living things. To address this, Breslow and his colleagues have recently put together a plausible storyline for how the uncommon amino acids delivered by the meteorites would mix with the raw ingredients on Earth to form the common amino acids that led to life. Through these meteorite seeds, the left-handedness in space "spread" to Earth's primordial soup. "We filled in the blanks that made it clear how the meteorite materials could transfer their chirality to normal amino acids," Breslow says. The left-handed excess in the meteorites is small - around 10 percent - but there are ways to amplify this through evaporation and crystallization to create a homochiral environment. "We assume that the potential for life to arise is widespread, but only where homochirality is present - near the meteorite sites - would it be successful," Breslow says. "Of course, the early Earth was heavily bombarded, so such sites could be widespread." If life got started around a meteorite impact, that could tell us what were the early conditions and the likely ingredients for life's big debut on our planet. And since the whole solar system would have been "seeded" by the same meteorites, any life on other planets or moons should also be left-handed. But around distant stars, the chiral mechanisms may have been reversed (e.g. the polarized light may have been in a different direction), so any aliens in these systems will likely be right-handed. It will be a long, long time before we can test this out. Share This Article With Planet Earth
Related Links - Darwin Today At TerraDaily.com
Life Out of the Tropics Moffett Field CA (SPX) Apr 17, 2009 At least that's the consensus of the high number of species crowding near the equator. However, the underlying reason behind this preference for low latitude real estate has eluded biologists. A recent study suggests that most species originate in the tropics. The results may lead to a better understanding of what a planet may need for life to thrive and survive. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |