![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Mar 13, 2017
A new mathematical model could help clarify what drove the evolution of large brains in humans and other animals, according to a study published in PLOS Computational Biology. Animals with high cognitive ability also have relatively large brains, but the factors that drive evolution of big brains remain unclear. Scientists have hypothesized that ecological, social, and cultural factors could each play a role. Most of these hypotheses have not been formalized mathematically, but doing so would allow scientists to refine their tests. To address the issue, Mauricio Gonzalez-Forero of University of Lausanne, Switzerland, and colleagues developed a mathematical model that predicts how large the human brain should be at different stages of an individual's life, depending on different possible evolutionary scenarios. The model relies on the assumption that the brain expends some energy on cognitive skills that allow an individual to extract energy from the environment (food), which in turn helps the brain grow. Given natural selection, it predicts how much energy is used to support brain growth at different ages under different biological settings. The researchers used the model to test a simple scenario in which social interactions and cultural factors are excluded, revealing the influence of ecological factors alone. In the scenario, a human must hunt or gather food alone, but may receive some help from its mother while it is still young. Under those specifications, the hypothetical human brain grew as big as ancient humans' brains are thought to have grown, and the slow growth rate matched that of modern human brains. This runs counter to prevailing thought, which holds that social and cultural influences are required to achieve these sizes and growth rates. "Our findings raise new questions about the effects and interactions of ecological, social, and cultural factors, and our framework offers a new tool to address them," Gonzalez-Forero says. "More broadly, our framework allows for new experiments in silico to study brain evolution, life history, and brain senescence." His team is now using the new model to investigate how social factors may influence evolution of large brain size. In the future, they hope to test cultural factors as well. Gonzalez-Forero M, Faulwasser T, Lehmann L (2017) A model for brain life history evolution. PLoS Comput Biol 13(2): e1005380. doi:10.1371/journal.pcbi.1005380
![]() Cleveland OH (SPX) Mar 09, 2017 The speed at which a tiny ant evolves to cope to its warming city environment suggests that some species may evolve quickly enough to survive, or even thrive, in the warmer temperatures found within cities, according to a new study by researchers at Case Western Reserve University. Evolution is often thought of as a process that takes millennia, but urban acorn ants collected in Cleveland ... read more Related Links PLOS Darwin Today At TerraDaily.com ![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |