. | . |
How did human brains get so large? by Staff Writers Brussel, Belgium (SPX) Jun 01, 2018
Over the last million years of evolution, our brain underwent a considerable increase in size and complexity, resulting in the exceptional cognitive abilities of the human species. This brain enlargement is largely due to an increase in the number of neurons in the cerebral cortex, the outer part of the brain. Since we share about 99% of our genome with that of our closest living relative, the chimpanzee, it has remained a daunting task for scientists to identify which human-specific gene changes may underlie the unique aspects of human brain evolution.
Genetic duplicates Vanderhaeghen: "Developmental biologists usually look at changes in the regulation of genes to explain evolutionary differences, and not so much at genes themselves, since we share so many of our genes even with simple organisms such as worms. But gene duplication can lead to novel genes in a species, which could contribute to the rapid emergence of human-specific traits, like the increased size of the brain's cortex." Several dozens of 'human-specific' genes have been found in the human genome, but their role has often remained unknown. Many of these genes are thought to be non-functional or redundant, and are not even appropriately annotated in genome databases.
Digging in the dark matter of the human genome That is why we had to use a tailored RNAseq analysis for specific and sensitive detection of the human-specific genes of interest. In that way, we could identify a whole repertoire of duplicated genes that are involved in the development of the cerebral cortex in humans." Among these, the researchers focused on one particular family, NOTCH2NL, a cluster of human-specific paralogs of the NOTCH2 receptor. The Notch pathway is well known as a key player in organ development, including that of the brain. Using a stem-cell-based model for cortical development, the scientists found that NOTCH2NL genes stood out for their ability to promote expansion of cortical stem cells, which in turn generated more neurons (see figure). Vanderhaeghen: "Given the paramount importance of the Notch pathway during neurogenesis, we hypothesized that NOTCH2NL genes could act as species-specific regulators of brain size. It is fascinating to see that genes that arose very recently during evolution interact with probably the oldest signaling pathway among all animals: the Notch pathway."
Brain developmental disorders The answer came from a group of American scientists led by David Haussler (UC Santa Cruz and Howard Hughes Medical Institute). They analyzed DNA from such patients with microcephaly or macrocephaly and found that the precise regions of origin of deletions and duplications remarkably matched the regions of two of the NOTCH2NL genes. Their findings are reported in the same issue of Cell. Vanderhaeghen: "Taken together, our study and that of our colleagues in the US point to a selective repertoire of human-specific gene duplications that may act as key controllers of human brain size and function: fewer copies of NOTCH2NL would lead to reduced brain size, while more copies would lead to an increase in brain size." But there remains more to be discovered, continues Vanderhaeghen: "Intriguingly, the same region in the genome holds several other human-specific genes with unknown function. It will be interesting to see if they control other aspects of human brain development." Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation, Suzuki et al., 2018 Cell
Geologic evidence in ancient boulders supports a coastal theory of early settlement in Americas Buffalo, NY (SPX) May 31, 2018 When and how did the first people come to the Americas? The conventional story says that the earliest settlers came via Siberia, crossing the now-defunct Bering land bridge on foot and trekking through Canada when an ice-free corridor opened up between massive ice sheets toward the end of the last ice age. But with recent archaeological evidence casting doubt on this thinking, scientists are seeking new explanations. One dominant, new theory: The first Americans took a coastal route along Al ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |