. Earth Science News .




.
TERRADAILY
How heavy and light isotopes separate in magma
by Staff Writers
Cleveland OH (SPX) Feb 28, 2012

File image courtesy AFP.

In the crash-car derby between heavy and light isotopes vying for the coolest spots as magma turns to solid rock, weightier isotopes have an edge, research led by Case Western Reserve University shows. This tiny detail may offer clues to how igneous rocks form. As molten rock cools along a gradient, atoms want to move towards the cool end.

This happens because hotter atoms move faster than cooler atoms and, therefore, hotter atoms move to the cool region faster than the cooler atoms move to the hot region.

Although all isotopes of the same element want to move towards the cool end, the big boys have more mass and, therefore, momentum, enabling them to keep moving on when they collide along the way.

"It's as if you have a crowded, sealed room of sumo wrestlers and geologists and a fire breaks out at one side of the room," said Daniel Lacks, chemical engineering professor and lead author of the paper.

"All will try to move to the cooler side of the room, but the sumo wrestlers are able to push their way through and take up space on the cool side, leaving the geologists on the hot side of the room."

Lacks, Van Orman and Lesher also published a short piece in the current issue of Nature, showing how their findings overturn an explanation based on quantum mechanics, published in that journal last year.

"The theoretical understanding of thermal isotope separation in gases was developed almost exactly 100 years ago by David Enskog, but there is as yet not a similar full understanding of this process in liquids," said Frank Richter, who is the Sewell Avery Distinguished Professor at the University of Chicago and a member of the National Academy of Sciences. He was not involved in the research.

"This work by Lacks et al. is an important step towards remedying this situation," he added.

This separation among isotopes of the same element is called fractionation.

Scientists have been able to see fractionation of heavy elements in igneous rocks only since the 1990s, Van Orman said. More sensitive mass spectrometers showed that instead of a homogenous distribution, the concentration ratio of heavy isotopes to light isotopes in some igneous rocks was up to 0.1 percent higher than in other rocks.

One way of producing this fractionation is by temperature.

To understand how this happens, the team of researchers created a series of samples made of molten magnesium silicate infused with elements of different mass, from oxygen on up to heavy uranium.

The samples, called silicate melts, were heated at one end in a standard lab furnace, creating temperature gradients in each. The melts were then allowed to cool and solidify.

The scientists then sliced the samples along gradient lines and dissolved the slices in acid. Analysis showed that no matter the element, the heavier isotopes slightly outnumbered the lighter at the cool end of the gradient.

Computer simulations of the atoms, using classical mechanics, agreed with the experimental results.

"The process depends on temperature differences and can be seen whether the temperature change across the sample is rapid or gradual," Lacks said.

Thermal diffusion through gases was one of the first methods used to separate isotopes, during the Manhattan Project. It turns out that isotope fractionation through silicate liquids is even more efficient than through gases.

"Fractionation can occur inside the Earth wherever a sustained temperature gradient exists," Van Orman said. "One place this might happen is at the margin of a magma chamber, where hot magma rests against cold rock. Another is nearly 1,800 miles inside the Earth, at the boundary of the liquid core and the silicate mantle."

The researchers are now adding pressure to the variables as they investigate further. This work was done at atmospheric pressure but where the Earth's core and mantle meet, the pressure is nearly 1.4 million atmospheres.

Lacks and Van Orman are unsure whether high pressure will result in greater or lesser fractionation. They can see arguments in favor of either.

Lacks worked with former postdoctoral researcher Gaurav Goel and geology professor James A. Van Orman at Case Western Reserve; Charles J. Bopp IV and Craig C. Lundstrum, of University of Illinois, Urbana; and Charles E. Lesher of the University of California at Davis. They described their theory and confirming mathematics, computer modeling, and experiments in the current issue of Physical Review Letters.

Related Links
Case Western Reserve University
Dirt, rocks and all the stuff we stand on firmly




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TERRADAILY
Taking the Earth's pulse with new economic and environmental index
Vancouver, Canada (SPX) Feb 22, 2012
A growing world population, mixed with the threat of climate change and mounting financial problems, has prompted University of British Columbia researchers to measure the overall 'health' of 152 countries around the world. Encompassing both economic and ecological security, high-income countries were ranked among the least healthy overall. Many countries in South America performed well, o ... read more


TERRADAILY
15 tourists killed in China bus plunge

Japan fears permanent ban on habitation near nuclear plant

India PM blames foreign NGOs for anti-nuclear demos

Swiss Re net profits up sharply to $2.6bn despite disasters

TERRADAILY
"Negative refraction" opens avenue to new products and industries

Thousands protest in Malaysia over rare earths plant

Nokia eyes China in smartphone comeback push

Asian mobile giants go ultra fast in race for smartphone pie

TERRADAILY
Phytoplankton key to a healthy planet

Climate change may increase risk of water shortages in hundreds of US counties by 2050

Radium Testing of Groundwater Shows Most Susceptible Regions are Central U.S. and East Coast

From Earth's Water to Cosmic Dawn: New Tools Unveiling Astronomical Mysteries

TERRADAILY
Loss of Antarctic base deals Brazil a major blow

Glaciers: A window into human impact on the global carbon cycle

Breaking Through the Ice at Lake Vostok

Chile to build up Antarctic military base

TERRADAILY
Climate change threatens S.Africa's rooibos tea

Early ripening of grapes pinned to warming, soil moisture

Policies implementing GMOs need to take biodiversity complexities into account

Hermetic bags save African crop

TERRADAILY
Tsunami towns at crossroads, despite clean-up

AFP photographer captures then and now of tsunami

Strong 6.8 quake shakes southwestern Siberia

Panic after powerful quake rocks Taiwan

TERRADAILY
UN asks Angola for helicopters

Missile strike kills Islamist fighters in Somalia

In Somalia, securing peace harder than seizing territory

Somali PM would 'welcome' air strikes against Shebab

TERRADAILY
Taking tips from Vikings can help us adapt to global change

Digital technologies reversing extinction of languages

Neanderthal demise due to many influences, including cultural changes

Why the brain is more reluctant to function as we age


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement