. Earth Science News .
WATER WORLD
How the Amazon basin waters the Atacama Desert
by Staff Writers
Cologne, Germany (SPX) Jan 11, 2022

The Atacama Desert is the driest region on Earth with annual precipitation rates below 2 l/m2 . Dr Christoph Bohm from the University of Cologne's Institute of Geophysics and Meteorology has identified moisture conveyor belts (MCBs) as the main mechanism for precipitation.

For the first time, the Amazon basin could be identified as dominant source region for water precipitating in the Atacama Desert in northern Chile. From the rainforest, elevated water vapour travels more than 2000 km westwards, crosses the Andes, and turns southeast over the Pacific to form precipitation over the Atacama Desert. Dr Christoph Bohm from the University of Cologne's Institute of Geophysics and Meteorology has identified moisture conveyor belts (MCBs) as the main mechanism for precipitation.

They account for 40 to 80 per cent of total precipitation in the Atacama. The findings show a new pathway of water supply for one of the driest regions on Earth aside from summer rain due to moist easterly winds (Bolivian High) and winter rain associated with westerly storm tracks. The study has been published in Geophysical Research Letters.

Aside from the poles, the Atacama Desert is the driest region on Earth with annual precipitation rates below 2 l/m2 (for comparison, the city of Cologne in Germany receives around 800 l/m2 during an average year). Previously, two different mechanisms have been described for the Atacama Desert: During the summer, episodic moist easterly winds transfer storm systems across the Andean mountain range, which usually impedes a transfer of moist air from the interior continent.

Associated precipitation affects mainly the northeastern part of the Atacama with decreasing rates towards the lower lying dry core of the desert. During winter, low pressure systems, which we are used to in more temperate midlatitude regions, can reach even subtropical regions and cause cloudiness and rain. These systems affect mainly the southwestern Atacama and have their origins over the Pacific Ocean.

Now, a third mechanism could be discovered which results in extreme precipitation events, Christoph Bohm explained: 'Accounting for more than half of the total precipitation in the Atacama Desert, moisture conveyor belts were established as the main precipitation source. These are special weather phenomena which feature strong water vapour transport.' Along the filamentary structure (mostly in heights between 3000 to 6000 m above sea level), water is transported across long distances without much exchange with the underlying moist Pacific air along the journey. When the water vapour band, which originated in the Amazon basin, reaches the Atacama Desert from the northwest, the air flow has to cross the coastal mountain range towering up to 2500 m. The air is forced to rise, which leads to cooling and, in turn, to precipitation formation.

'The heavier the precipitation event, the more likely it is associated with such a moisture conveyor belt,' said Bohm. 'For a specific case, a region in the driest part of the desert received more than 50 l/m2 rain, which exceeded the tenfold annual average. For highly adapted species, the sudden water availability can bring death.'

At the same time, such events trigger biological explosions like the spectacular flowering desert. Furthermore, run-off generated by heavy rainfall is capable of moving debris and reshaping the landscape. Traces from such activities like pollen and organic carbon deposition or moved material of different grain sizes are manifested in the desert soil and conserved through the enduring dryness.

'Researchers exploit geological archives like such soil samples to reconstruct climate history. Now we know that potential hints for phases of more frequent heavy rain events have to be interpreted in the new light of moisture conveyor belts, which most likely dominate the precipitation signal seen in these geological archives,' explained Bohm. Additionally, scientists can extract information on humidity in past geological eras from different isotopes of water atoms from the desert soil.

The ratio of heavier, more neutron-containing, to lighter water isotopes reflects atmospheric water supply. In particular, in the Atacama Desert the gypsum soil conserves the water isotopic composition from when it was formed millions of years ago. 'To paint a consistent picture, the source and pathway of the supplied water has to be considered, as it determines the fractionation processes of the water isotopes. The new results help to constrain assumptions necessary for such investigation and will allow more conclusive results.'

Situations of enhanced water vapour or even precipitation also affect astronomers' research, as the Atacama hosts many world leading astronomical observatories. Atmospheric water vapour perturbs a clear view of space. 'The improved understanding of the mechanisms behind water vapour transport will enable better predictions of suitable conditions for these challenging observations in the context of a changing climate,' Bohm concluded.

For the first time, the Amazon basin could be identified as dominant source region for water precipitating in the Atacama Desert in northern Chile. From the rainforest, elevated water vapour travels more than 2000 km westwards, crosses the Andes, and turns southeast over the Pacific to form precipitation over the Atacama Desert. Dr Christoph Bohm from the University of Cologne's Institute of Geophysics and Meteorology has identified moisture conveyor belts (MCBs) as the main mechanism for precipitation.

They account for 40 to 80 per cent of total precipitation in the Atacama. The findings show a new pathway of water supply for one of the driest regions on Earth aside from summer rain due to moist easterly winds (Bolivian High) and winter rain associated with westerly storm tracks. The study has been published in Geophysical Research Letters.

Aside from the poles, the Atacama Desert is the driest region on Earth with annual precipitation rates below 2 l/m2 (for comparison, the city of Cologne in Germany receives around 800 l/m2 during an average year). Previously, two different mechanisms have been described for the Atacama Desert: During the summer, episodic moist easterly winds transfer storm systems across the Andean mountain range, which usually impedes a transfer of moist air from the interior continent.

Associated precipitation affects mainly the northeastern part of the Atacama with decreasing rates towards the lower lying dry core of the desert. During winter, low pressure systems, which we are used to in more temperate midlatitude regions, can reach even subtropical regions and cause cloudiness and rain. These systems affect mainly the southwestern Atacama and have their origins over the Pacific Ocean.

Now, a third mechanism could be discovered which results in extreme precipitation events, Christoph Bohm explained: 'Accounting for more than half of the total precipitation in the Atacama Desert, moisture conveyor belts were established as the main precipitation source. These are special weather phenomena which feature strong water vapour transport.' Along the filamentary structure (mostly in heights between 3000 to 6000 m above sea level), water is transported across long distances without much exchange with the underlying moist Pacific air along the journey. When the water vapour band, which originated in the Amazon basin, reaches the Atacama Desert from the northwest, the air flow has to cross the coastal mountain range towering up to 2500 m. The air is forced to rise, which leads to cooling and, in turn, to precipitation formation.

'The heavier the precipitation event, the more likely it is associated with such a moisture conveyor belt,' said Bohm. 'For a specific case, a region in the driest part of the desert received more than 50 l/m2 rain, which exceeded the tenfold annual average. For highly adapted species, the sudden water availability can bring death.' At the same time, such events trigger biological explosions like the spectacular flowering desert. Furthermore, run-off generated by heavy rainfall is capable of moving debris and reshaping the landscape. Traces from such activities like pollen and organic carbon deposition or moved material of different grain sizes are manifested in the desert soil and conserved through the enduring dryness.

'Researchers exploit geological archives like such soil samples to reconstruct climate history. Now we know that potential hints for phases of more frequent heavy rain events have to be interpreted in the new light of moisture conveyor belts, which most likely dominate the precipitation signal seen in these geological archives,' explained Bohm. Additionally, scientists can extract information on humidity in past geological eras from different isotopes of water atoms from the desert soil.

The ratio of heavier, more neutron-containing, to lighter water isotopes reflects atmospheric water supply. In particular, in the Atacama Desert the gypsum soil conserves the water isotopic composition from when it was formed millions of years ago. 'To paint a consistent picture, the source and pathway of the supplied water has to be considered, as it determines the fractionation processes of the water isotopes. The new results help to constrain assumptions necessary for such investigation and will allow more conclusive results.'

Situations of enhanced water vapour or even precipitation also affect astronomers' research, as the Atacama hosts many world leading astronomical observatories. Atmospheric water vapour perturbs a clear view of space. 'The improved understanding of the mechanisms behind water vapour transport will enable better predictions of suitable conditions for these challenging observations in the context of a changing climate,' Bohm concluded.

Research Report: "The Role of Moisture Conveyor Belts for Precipitation in the Atacama Desert"


Related Links
University of Cologne
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
British regulator concerned about Suez-Veolia merger
London (AFP) Dec 7, 2021
Britain's competition authority said Tuesday it had concerns that the merger of French waste management firms Veolia and Suez could lead to higher prices. The Competition and Markets Authority ordered the firms, whose merger is still being reviewed by regulators in several countries, to respond to its concerns within five days or face a more in-depth probe. "In particular, the CMA is concerned that Veolia and Suez are two of only a small number of suppliers active within the UK that are able to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Climate change worsening toll of humid heat on outdoor workers: study

6 dead as scaffolding collapses at Iraq Shiite pilgrimage site

Thaw of permafrost has vast impact on built environment

Weather expert predicts more disasters looming for Brazil

WATER WORLD
Take-Two to buy 'Farmville' creator Zynga for $12.7 bn

Metaverse gets touch of reality at CES

Ammonia and paper: Sustainability ideas at CES tech show

Debris from failed Russian rocket falls into sea near French Polynesia

WATER WORLD
How the Amazon basin waters the Atacama Desert

Microbes produce oxygen in the dark

Nigeria gunmen kidnap three Chinese dam workers: police

Scientists build new atlas of ocean's oxygen-starved waters

WATER WORLD
Climate change: thawing permafrost a triple-threat

Arctic coasts in transition

Malaspina Glacier, world's largest piedmont glacier, surges approximately every 10 years

Antarctic oceanographers use seals to do research where ships fear to go

WATER WORLD
Ancient Mesopotamian discovery transforms knowledge of early farming

Powerful sensors on planes detect crop nitrogen with high accuracy

Transforming farming with farmer led experimentation

Too much meat? Spain factory farming debate creates beef

WATER WORLD
When water is coming from all sides

Ten killed by heavy rains in southeastern Brazil

Spain volcano island residents return home to battle ash

6.6-magnitude quake strikes off Indonesia's Java island

WATER WORLD
Abiy has 'special responsibility' to end Tigray conflict: Nobel panel

UN's Guterres 'saddened' by reports of deadly strike in Tigray: spokesman

At least 108 civilians killed this year in Tigray airstrikes: UN

12 in custody in Burkina over 'destabilisation' plot

WATER WORLD
Earliest human remains in eastern Africa dated to more than 230,000 years ago

European archaeologists back in Iraq after years of war

Rare African script offers clues to the evolution of writing

Anthropologists study the energetics of uniquely human subsistence strategies









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.