![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Dec 15, 2015s
Color-image based systems are excellent at locating people in aerial search and rescue operations, but fall short when it comes to discerning between actual human skin and objects with similar hues. To remedy this, researchers at the Air Force Institute of Technology (AFIT) have developed a novel two-dimensional feature space which uses the spectral absorption characteristics of melanin, hemoglobin and water to better characterize human skin. Spectral imaging systems use information from the entire electromagnetic spectrum to provide digital images with much greater information per pixel than traditional cameras. Feature spaces in a spectral imaging system are vectors that numerically represent an object's characteristics. The skin detection approach is described this week in Applied Optics, a journal from The Optical Society. In their work, the AFIT research team used feature spaces to key in on specific constituents of human tissue by using a skin index concerned with how water and melanin's presence in skin manifests at two different wavelengths in the near-infrared region. These changes would cut the overall cost of hyperspectral-based search and rescue systems by a factor of seven. "The study represents a crossroads between physics and statistical pattern recognition," said Michael J. Mendenhall, assistant professor, Air Force Institute of Technology, Department of Electrical and Computer Engineering, Dayton, Ohio, USA. "The features were designed based on an understanding of the physics behind skin's spectral shape, but in such a way that the features separated skin and non-skin pixels in order to make the pattern recognition portion of the problem more effective." "After a lot of investigation into spectral properties of false alarm sources, we arrived at a simple observation that skin is more red than green, due to the melanin in darker skin and oxygenated hemoglobin in lighter skin, whereas many of the false alarm sources were more green than red," Mendenhall said. Many current image recognition programs employ hyperspectral imaging systems, which allow engineers to search for a wide variety of objects - exoplanets, oil wells, or human skin, to name a few - by looking for specific "fingerprints" in the electromagnetic spectrum. However, the involved image acquisition and post-processing are typically too slow for live search and rescue operations. Additionally, specific air platform requirements and the high cost of acquisition and management - around $700,000 - currently puts hyperspectral systems out of reach for search and rescue organizations. Mendenhall and his colleagues use their skin detection and false alarm suppression feature space to design an application-specific optical system using three framing cameras; their first breadboard system is about 12"x12"x6". Because their skin detection solution can be implemented with less expensive technology capable of live video frame rates, its total price tag would be around $100,000. Future work for Mendenhall and his colleagues includes investigating the scattering properties of hair in order to characterize pixels as a mix of skin and hair, as well as improving the rates of their system by accounting for skin's specular, or mirror-like, reflection of light. Paper: M. Mendenhall, A. Nunez, R. Martin, 'Human skin detection in the visible and near infrared,' Applied Optics 54, 10559-10570 (2015)
Related Links The Optical Society Bringing Order To A World Of Disasters A world of storm and tempest When the Earth Quakes
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |