Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
In one aspect of vision, computers catch up to primate brain
by Staff Writers
Boston MA (SPX) Dec 23, 2014


File image.

For decades, neuroscientists have been trying to design computer networks that can mimic visual skills such as recognizing objects, which the human brain does very accurately and quickly.

Until now, no computer model has been able to match the primate brain at visual object recognition during a brief glance. However, a new study from MIT neuroscientists has found that one of the latest generation of these so-called "deep neural networks" matches the primate brain.

Because these networks are based on neuroscientists' current understanding of how the brain performs object recognition, the success of the latest networks suggest that neuroscientists have a fairly accurate grasp of how object recognition works, says James DiCarlo, a professor of neuroscience and head of MIT's Department of Brain and Cognitive Sciences and the senior author of a paper describing the study in the journal PLoS Computational Biology.

"The fact that the models predict the neural responses and the distances of objects in neural population space shows that these models encapsulate our current best understanding as to what is going on in this previously mysterious portion of the brain," says DiCarlo, who is also a member of MIT's McGovern Institute for Brain Research.

This improved understanding of how the primate brain works could lead to better artificial intelligence and, someday, new ways to repair visual dysfunction, adds Charles Cadieu, a postdoc at the McGovern Institute and the paper's lead author.

Other authors are graduate students Ha Hong and Diego Ardila, research scientist Daniel Yamins, former MIT graduate student Nicolas Pinto, former MIT undergraduate Ethan Solomon, and research affiliate Najib Majaj.

Inspired by the brain
Scientists began building neural networks in the 1970s in hopes of mimicking the brain's ability to process visual information, recognize speech, and understand language.

For vision-based neural networks, scientists were inspired by the hierarchical representation of visual information in the brain. As visual input flows from the retina into primary visual cortex and then inferotemporal (IT) cortex, it is processed at each level and becomes more specific until objects can be identified.

To mimic this, neural network designers create several layers of computation in their models. Each level performs a mathematical operation, such as a linear dot product. At each level, the representations of the visual object become more and more complex, and unneeded information, such as an object's location or movement, is cast aside.

"Each individual element is typically a very simple mathematical expression," Cadieu says. "But when you combine thousands and millions of these things together, you get very complicated transformations from the raw signals into representations that are very good for object recognition."

For this study, the researchers first measured the brain's object recognition ability. Led by Hong and Majaj, they implanted arrays of electrodes in the IT cortex as well as in area V4, a part of the visual system that feeds into the IT cortex.

This allowed them to see the neural representation -- the population of neurons that respond -- for every object that the animals looked at.

The researchers could then compare this with representations created by the deep neural networks, which consist of a matrix of numbers produced by each computational element in the system. Each image produces a different array of numbers. The accuracy of the model is determined by whether it groups similar objects into similar clusters within the representation.

"Through each of these computational transformations, through each of these layers of networks, certain objects or images get closer together, while others get further apart," Cadieu says.

The best network was one that was developed by researchers at New York University, which classified objects as well as the macaque brain.

More processing power
Two major factors account for the recent success of this type of neural network, Cadieu says. One is a significant leap in the availability of computational processing power. Researchers have been taking advantage of graphical processing units (GPUs), which are small chips designed for high performance in processing the huge amount of visual content needed for video games.

"That is allowing people to push the envelope in terms of computation by buying these relatively inexpensive graphics cards," Cadieu says.

The second factor is that researchers now have access to large datasets to feed the algorithms to "train" them. These datasets contain millions of images, and each one is annotated by humans with different levels of identification. For example, a photo of a dog would be labeled as animal, canine, domesticated dog, and the breed of dog.

At first, neural networks are not good at identifying these images, but as they see more and more images, and find out when they were wrong, they refine their calculations until they become much more accurate at identifying objects.

Cadieu says that researchers don't know much about what exactly allows these networks to distinguish different objects.

"That's a pro and a con," he says. "It's very good in that we don't have to really know what the things are that distinguish those objects. But the big con is that it's very hard to inspect those networks, to look inside and see what they really did. Now that people can see that these things are working well, they'll work more to understand what's happening inside of them."

DiCarlo's lab now plans to try to generate models that can mimic other aspects of visual processing, including tracking motion and recognizing three-dimensional forms. They also hope to create models that include the feedback projections seen in the human visual system. Current networks only model the "feedforward" projections from the retina to the IT cortex, but there are 10 times as many connections that go from IT cortex back to the rest of the system.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Biologist Reveals How Whales May 'Sing' for Their Supper
Syracuse NY (SPX) Dec 23, 2014
Humpback whales have a trick or two when it comes to finding a quick snack at the bottom of the ocean. But how they pinpoint that meal at night, with little or no available light, remains a mystery. Susan Parks, assistant professor of biology in the College of Arts and Sciences, in collaboration with a consortium of other researchers, has been studying these unique feeding behaviors. Her r ... read more


FLORA AND FAUNA
Premature death more likely in areas with lots of alcohol outlets

Second Christmas in ruins in Philippine disaster zone

Indonesian rescuers end search for landslide victims

Lives of danger, poverty on Philippines' typhoon coast

FLORA AND FAUNA
Breakthrough in predictions of pressure-dependent combustion reactions

Back to future with Roman architectural concrete

Earth's most abundant mineral finally has a name

'Mind the gap' between atomically thin materials

FLORA AND FAUNA
Colorado River Delta greener after engineered pulse of water

Four including Chinese killed in Pakistan dam accident

Anger against water tax shakes up Ireland

Global warming blamed for Pacific coral bleaching

FLORA AND FAUNA
Methane is leaking from permafrost offshore Siberia

Four rescued from boat stuck in Antarctic

The Greenland Ice Sheet: Now in HD

North Atlantic signalled Ice Age thaw 1,000 years before it happened

FLORA AND FAUNA
Can returning crops to their wild states help feed the world?

Little Uruguay has big plans for smart agriculture

From Vietnam with love: local caviar aims to make a splash

Rise of Brazil's ranching queen sparks green protests

FLORA AND FAUNA
As world honours the dead, Indonesia begins tsunami memorials

10 years on, lessons of Asian tsunami hit by 'disaster amnesia'

Tsunami orphans recount journey to philanthropy

Tourists stranded as monsoon floods hit Malaysian jungle

FLORA AND FAUNA
Elephant ivory smuggling 'kingpin' arrested in Tanzania

Ethiopia says ready to boost Somalia troops after SLeone exit

African leaders call on UN for intervention in Libya

Nigeria says reports of latest Islamist kidnap 'unverified'

FLORA AND FAUNA
The fine-tuning of human color perception

Researchers date oldest stone tool ever found in Turkey

Lightweight skeletons of modern humans have recent origin

Echolocation acts as supplemental sense for the blind




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.