. Earth Science News .
Latest Fuel Cell Material Advance Overcomes Low Humidity Conductivity Problem

The future is almost here...
by Staff Writers
Blacksburg VA (SPX) Sep 11, 2006
Fuel cells have been a workable technology for decades - but expensive and lacking in infrastructure. In recent years, researchers have addressed durability, manufacturability, and conductivity challenges in alternative proton exchange membrane (PEM) materials for fuel cells - bringing the hydrogen-based energy source closer to reality.

James McGrath, University Distinguished Professor of Chemistry with the Macromolecules and Interfaces Institute at Virginia Tech, announced his research group's latest development, a PEM material that retains conductivity during low humidity, during his plenary lecture at the Challenges for the Hydrogen Economy symposium during the 232nd National Meeting of the American Chemical Society (ACS) on September 10-14 in San Francisco.

Fuel cells convert chemical energy, usually from hydrogen, to electrical energy. In a PEM fuel cell, the critical exchange takes place through a thin water-swollen copolymer film that contains sulfonic acid (SO3H) groups. Electrons are peeled off by oxidation of the hydrogen atoms and hydrated protons pass through the film to combine with oxygen on the other side to form water as a byproduct.

The efficiency of the exchange process depends upon water, so efficiency - measured as proton conductivity - goes down as humidity goes down. "Up to now, a lot of water has been needed to assist the proton transfer process," said McGrath.

"But, in the desert, that is pretty inefficient." McGrath, chemical engineering Professor Don Baird, and their students demonstrated a method for creating a material with improved conductivity even at lower humidity. The U.S. Department of Energy awarded McGrath and Baird's groups $1.5 million over five years to advance the research.

Instead of stirring two kinds of reactive monomers, or small molecules, together to form a new random copolymer, the new material links blocks of two different short polymers in sequences. For example, he would link polymer W (loves water) and polymer d (dry but strong) into a chain this way: WWWWWdddddddWWWWWdddddddd.

The researchers can link a 10- to 50-unit block of a polymer containing acidic groups (SO3H) that like water (hydrophilic) to an equally long block of a polymer that has mechanical strength, thermal stability, and endurance, but hates water (hydrophobic). The chains self-assemble into flexible thin films. Under an atomic force microscope, the film's swirling surface looks like a fingerprint, with light ridges and dark channels.

It turns out that the soft hydrophilic polymer forms the dark channels where water is easily absorbed so that the entire film - or proton exchange membrane (PEM) - has an affinity for water transport that is two to three times higher than the present commercially available PEM.

In addition to making PEM materials with better qualities, another goal of the research is to make PEM materials that can be easily manufactured. The self-assembling nature of the block copolymer material into a nanocomposite film is an important attribute.

In addition, Baird is working on processing the film from powders using a reverse roll coater, equipment commonly available in the coatings industry but not yet being used to produce PEM material. McGrath will present the paper, "Progress in alternate proton exchange membrane materials for fuel cells (Fuel 3)," at 10:15 a.m. Sunday, Sept. 10, in the Golden Ballroom of the Sheraton Palace.

Graduate students in McGrath's group will present details regarding the alternative PEM materials during the Division of Fuel Chemistry symposium. The first public presentation of most of the atomic force microscope images of the new polymer will be during a presentation by Virginia Tech graduate student Anand Badami.

The paper, Morphological analysis of molecular weight effects based on random and multiblock copolymers for fuel cells, is coauthored by fellow graduate students in Virginia Tech's macromolecular science and engineering program Hae-Seung Lee, Yanxiang Li, Abhishek Roy, and Hang Wang, and McGrath.

Yanxian Li will report on the synthesis of the new material in the paper, "Synthesis and characterization of partially fluorinated poly(arylene ether ketone)- poly(arylene ether sulfone) (6FK- BPSH) multiblock copolymers containing sulfonate groups for proton exchange membrane," co-authored by fellow students Roy, Badami, and Juan Yang, postdoctoral associate Zhongbiao Zhang, and McGrath.

And Abhishek Roy reports on measurements of cell conductivity in the paper, "Transport properties of multiblock hydrophilic-hydrophobic proton exchange membranes for fuel cells," co-authored by Hae-Seung Lee, Badami1, Xiang Yu, Li, chemistry professor Thomas E. Glass, and McGrath.

Related Links
Virginia Tech
Powering The World in the 21st Century

Researchers Aim To Enhance Air Vehicle Systems
Arlington VA (AFPN) Sep 10, 2006
Air Force Office of Scientific Research officials here recently awarded the University of Washington and three partner universities a grant worth approximately $6 million over five years to study the design of air vehicles capable of collecting and storing solar and heat energies.







  • Trauma Expert Crusades For Changes In Disaster Preparedness And Recovery
  • China To Build Earthquake Warning System At Three Gorges Reservoir Area
  • Interview: Katrina Lessons Learned
  • Katrina Response A 'Systemic Failure': Former US Emergency Response Chief

  • Climate Change Rocked Cradles Of Civilization
  • Precision Climate Modeling Is Forecast
  • Siberian Lakes Burp Time-Bomb Greenhouse Gas
  • Greenhouse Gas Bubbling From Melting Permafrost Feeds Climate Warming

  • Acoustic Data May Reveal Hidden Gas And Oil Supplies
  • Smoke Plume Dispersal From The World Trade Center Disaster
  • DMC International Imaging Wins 2nd Year Contract To Monitor Amazonian Rainforest
  • What Is It Like To Be On A NASA Hurricane Mission

  • Researchers Aim To Enhance Air Vehicle Systems
  • Chemical Screening system helps evaluate PEM Fuel Cell Materials
  • High-Value Chemicals Produced From Ethanol Feedstocks Could Boost Biorefinery Economics
  • Solar Energy: Charged For The Future

  • Satellites Track Migratory Birds In Fight Against Avian Influenza
  • Cancer Surge Overwhelming AIDS-Crisis Botswana
  • Africa Braces For New, Deadly, TB Strains
  • Viruses Can Jump Between Primates And Humans

  • NASA Study Solves Ocean Plant Mystery
  • Virus May Control Carp The Australian River Rabbit
  • Ocean Seep Mollusks May Share Evolutionary History With Other Deep-Sea Creatures
  • Genetic Surprise Confirms Neglected 70-Year-Old Evolutionary Theory

  • Five dead, 6,000 Poisoned In Ivory Coast Toxic Waste Disaster
  • Analysis: No Room For Shangri-La In China
  • Over 2000 Feared To Have Lead Poisoning In China
  • Environmental Pollution Costs China 64 Billion Dollars In 2004

  • Modern Humans, Not Neandertals, May Be Evolution's 'Odd Man Out'
  • How Did Our Ancestors' Minds Really Work
  • Ancient Rock Art In Australia Threatened By Major Gas Project
  • Well Educated More Interested In Designing Babies

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement