|
. | . |
|
by Staff Writers Boulder CO (SPX) Mar 06, 2015
In their open-access paper for Geology, Kimberly Genareau and colleagues propose, for the first time, a mechanism for the generation of glass spherules in geologic deposits through the occurrence of volcanic lightning. The existence of fulgurites - glassy products formed in rocks and sediments struck by cloud-to-ground lightning - provide direct evidence that geologic materials can be melted via natural lightning occurrence. Lightning-induced volcanic spherules (LIVS) form in the atmosphere from the physical transformation of volcanic ash particles into spheres of glass due to the high heat generated by lightning discharge. Examples of these textures were discovered in deposits from two volcanic eruptions where lightning was extensively documented: The 23 March 2009 eruption of Mount Redoubt, Alaska, USA, and the April-May 2010 eruption of Eyjafjallajokull, Iceland. In some cases, the individual spherules are smooth, while in other instances the surfaces are interrupted by holes or cracks that appear to result from outward expansion of the spherule interior. Analogue laboratory experiments, examining the flashover mechanism across high voltage insulators contaminated by volcanic ash, confirm that glass spherules can be formed from the high heat generated by electrical discharge. Kimberly Genareau et al., University of Alabama, Tuscaloosa, Alabama, USA. Published online ahead of print on 27 Feb. 2015;
Related Links Geological Society of America Bringing Order To A World Of Disasters When the Earth Quakes A world of storm and tempest
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |