. | . |
Love waves from the ocean floor by Staff Writers Stanford CA (SPX) Nov 16, 2020
Vibrations travel through our planet in waves, like chords ringing out from a strummed guitar. Earthquakes, volcanoes and the bustle of human activity excite some of these seismic waves. Many more reverberate from wind-driven ocean storms. As storms churn the world's seas, wind-whipped waves at the surface interact in a unique way that produces piston-like thumps of pressure on the seafloor, generating a stream of faint tremors that undulate through Earth to every corner of the globe. "There is an imprint of those three Earth systems in this ambient seismic data: atmosphere, Earth's rocky outer layers and ocean," said Stanford University geophysicist Lucia Gualtieri, lead author of a paper in Proceedings of the National Academy of Sciences that helps to resolve a decades-old conundrum over the physics of seismic waves related to ocean storms. Known as secondary microseisms, the small seismic waves excited by rumbling oceans are so ubiquitous and chaotic that seismologists have long set the data aside. "When you record these waves, the seismic record looks like random noise because there are so many sources, one close to the other across the extended area of a storm. They're all acting at the same time, and the resulting wavefields interfere with each other," Gualtieri said. "You want to just discard it." Yet over the last 15 years, researchers have found a way to extract meaning from this noisy data. By analyzing how quickly pairs of waves travel from one seismic station to another, they have begun to glean insights about the materials they're moving through. "We use seismic waves like X-rays in medical imaging for scanning the Earth," said Gualtieri, who is an assistant professor of geophysics in Stanford's School of Earth, Energy and Environmental Sciences (Stanford Earth).
Love waves from the ocean floor For decades, scientists have understood the vertical component of ocean-storm microseisms, where Rayleigh waves dominate. But there is another set of vibrations recorded during ocean storms that are inexplicable in the accepted theories for how stormy seas generate movements in the solid Earth. These vibrations, named Love waves after their 20th-century discoverer, jostle underground rock particles side to side - perpendicular to their path forward - like a slithering snake. "These waves shouldn't be there at all," Gualtieri said. "We didn't know where they were coming from." Scientists have presented two plausible explanations. One idea is that when the vertical force pumping down from colliding ocean waves encounters a slope on the seafloor, it splits and forms the two different surface wave types: Rayleigh and Love. "In that case, the source of Love waves would be very close to the source of Rayleigh waves, if not the same location," Gualtieri said. But Gualtieri's research, co-authored with geoscientists from Princeton University, finds the slopes and inclines of the seafloor are not steep enough to generate the strong horizontal force necessary to produce the Love waves picked up by seismic recorders. Their results, published Nov. 9, support an alternative theory, in which Love waves originate within the Earth itself. It turns out that when windswept seas throttle pressure down to the seafloor, the patchwork structure of the solid Earth underneath answers with a thrum all its own. "We understand how earthquakes create Love waves, but we've never exactly figured out how ocean waves create them," said ambient seismic noise expert Keith Koper, a professor of geology and geophysics and director of seismograph stations at the University of Utah, who was not involved with the study. "This is a little embarrassing because ocean-generated Love waves have been observed for over 50 years." The paper led by Gualtieri, he said, "provides conclusive evidence" for how ocean waves generate this particular kind of vibration in the Earth.
Simulating Earth One version of the model Earth represented the planet as a simplistic stratified world, where properties vary only with depth, like a layer cake. The other, more true-to-life model captured more of the three-dimensional variation in its underground terrain, like a chocolate chip cookie. For each version, the researchers switched underwater depth data on and off to test whether seafloor features like canyons, ravines and mountains - as opposed to the deeper structure - could produce Love waves. The results show that Love waves are poorly generated in the layer-cake-like, one-dimensional Earth. Given about 30 minutes and a rumbling ocean, however, Love waves emanated from below the seafloor in the three-dimensional model. When Rayleigh waves and other seismic waves generated by ocean storms encounter hotter or cooler zones and different materials in their lateral journey through Earth, the study suggests their energy scatters and refocuses. In the process, a portion of the wavefield converts to Love waves. "If you apply those pressure sources from interfering ocean waves and you wait, the Earth will give you the entire wavefield," Gualtieri said. "It's the Earth itself that will generate the Love waves." According to Gualtieri, better understanding of how these vibrations arise and propagate through Earth could help to fill in gaps in knowledge of not only our planet's interior but also its changing climate. Analog seismic recordings date back to before the satellite era, and high-quality digital data has been logged for several decades. "This database holds information about environmental processes, and it's virtually untapped," she said.
New study uses satellites and field studies to improve coral reef restoration Tempe AZ (SPX) Nov 11, 2020 Our planet's coral reef ecosystems are in peril from multiple threats. Anthropogenic CO2 has sparked a rise in global average sea surface temperatures, pushing reef survival beyond its upper thermal limits. Coastal development from industry, aquaculture, and infrastructure generates sedimentation and increased turbidity in coastal waters, which raises particulate organic carbon (POC) levels. Additionally, sedimentation reduces photosynthetically active radiation (PAR), the much-needed sunlight soaked up ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |