. | . |
MERMAIDs reveal secrets from below the ocean floor by Staff Writers Princeton NJ (SPX) Feb 05, 2019
Seismologists use waves generated by earthquakes to scan the interior of our planet, much like doctors image their patients using medical tomography. Earth imaging has helped us track down the deep origins of volcanic islands such as Hawaii, and identify the source zones of deep earthquakes. "Imagine a radiologist forced to work with a CAT scanner that is missing two-thirds of its necessary sensors," said Frederik Simons, a professor of geosciences at Princeton. "Two-thirds is the fraction of the Earth that is covered by oceans and therefore lacking seismic recording stations. Such is the situation faced by seismologists attempting to sharpen their images of the inside of our planet." Some 15 years ago, when he was a postdoctoral researcher, Simons partnered with Guust Nolet, now the George J. Magee Professor of Geoscience and Geological Engineering, Emeritus, and they resolved to remediate this situation by building an undersea robot equipped with a hydrophone - an underwater microphone that can pick up the sounds of distant earthquakes whose waves deliver acoustic energy into the oceans through the ocean floor. This week, Nolet, Simons and an international team of researchers published the first scientific results from the revolutionary seismic floats, dubbed MERMAIDs - Mobile Earthquake Recording in Marine Areas by Independent Divers. The researchers, from institutions in the United States, France, Ecuador and China, found that the volcanoes on Galapagos are fed by a source 1,200 miles (1,900 km) deep, via a narrow conduit that is bringing hot rock to the surface. Such "mantle plumes" were first proposed in 1971 by one of the fathers of plate tectonics, Princeton geophysicist W. Jason Morgan, but they have resisted attempts at detailed seismic imaging because they are found in the oceans, rarely near any seismic stations. MERMAIDs drift passively, normally at a depth of 1,500 meters - about a mile below the sea surface - moving 2-3 miles per day. When one detects a possible incoming earthquake, it rises to the surface, usually within 95 minutes, to determine its position with GPS and transmit the seismic data. By letting their nine robots float freely for two years, the scientists created an artificial network of oceanic seismometers that could fill in one of the blank areas on the global geologic map, where otherwise no seismic information is available. The unexpectedly high temperature that their model shows in the Galapagos mantle plume "hints at the important role that plumes play in the mechanism that allows the Earth to keep itself warm," said Nolet. "Since the 19th century, when Lord Kelvin predicted that Earth should cool to be a dead planet within a hundred million years, geophysicists have struggled with the mystery that the Earth has kept a fairly constant temperature over more than 4.5 billion years," Nolet explained. "It could have done so only if some of the original heat from its accretion, and that created since by radioactive minerals, could stay locked inside the lower mantle. But most models of the Earth predict that the mantle should be convecting vigorously and releasing this heat much more quickly. "These results of the Galapagos experiment point to an alternative explanation: the lower mantle may well resist convection, and instead only bring heat to the surface in the form of mantle plumes such as the ones creating Galapagos and Hawaii." To further answer questions on the heat budget of the Earth and the role that mantle plumes play in it, Simons and Nolet have teamed up with seismologists from the Southern University of Science and Technology (SUSTech) in Shenzhen, China, and from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). Together, and with vessels provided by the French research fleet, they are in the process of launching some 50 MERMAIDs in the South Pacific to study the mantle plume region under the island of Tahiti. "Stay tuned! There are many more discoveries to come," said professor Yongshun (John) Chen, a 1989 Princeton graduate alumnus who is head of the Department of Ocean Science and Engineering at SUSTech, which is leading the next phase of what they and their international team have called EarthScope-Oceans.
Research Report: "Imaging the Galapagos mantle plume with an unconventional application of floating seismometers,"
Waters west of Europe drive ocean overturning circulation, key for regulating climate Miami FL (SPX) Feb 01, 2019 A new international study finds that the Atlantic meridional overturning circulation (MOC), a deep-ocean process that plays a key role in regulating Earth's climate, is primarily driven by cooling waters west of Europe. In a departure from the prevailing scientific view, the study shows that most of the overturning and variability is occurring not in the Labrador Sea off Canada, as past modeling studies have suggested, but in regions between Greenland and Scotland. There, warm, salty, shallow wate ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |