Earth Science News
ICE WORLD
Meltwater flowing beneath Antarctic glaciers may be accelerating their retreat
An aerial view of the Denman Glacier ice tongue in East Antarctica
Reuters Events SMR and Advanced Reactor 2025
Meltwater flowing beneath Antarctic glaciers may be accelerating their retreat
by Staff Writers
San Diego CA (SPX) Oct 30, 2023

A new Antarctic ice sheet modeling study from scientists at UC San Diego's Scripps Institution of Oceanography suggests that meltwater flowing out to sea from beneath Antarctic glaciers is making them lose ice faster. The model's simulations suggest this effect is large enough to make a meaningful contribution to global sea-level rise under high greenhouse gas emissions scenarios.

The extra ice loss caused by this meltwater flowing out to sea from beneath Antarctic glaciers is not currently accounted for in the models generating major sea-level rise projections, such as those of the Intergovernmental Panel on Climate Change (IPCC). If this process turns out to be an important driver of ice loss across the entire Antarctic ice sheet, it could mean current projections underestimate the pace of global sea-level rise in decades to come.

"Knowing when and how much global sea-level will rise is critical to the welfare of coastal communities," said Tyler Pelle, the study's lead author and a postdoctoral researcher at Scripps. "Millions of people live in low-lying coastal zones and we can't adequately prepare our communities without accurate sea-level rise projections."

The study, published October 27 in Science Advances and funded by the National Science Foundation (NSF), NASA, and the Cecil H. and the Ida M. Green Foundation for Earth Sciences at the Institute of Geophysics and Planetary Physics at Scripps, modeled the retreat of two glaciers in East Antarctica through the year 2300 under different emissions scenarios and projected their contributions to sea-level rise. Unlike previous Antarctic ice sheet models, this one included the influence of this flow of meltwater from beneath glaciers out to sea, which is known as subglacial discharge.

The two glaciers the study focused on, named Denman and Scott, together hold enough ice to cause nearly 1.5 meters (5 feet) of sea-level rise. In a high emissions scenario (IPCC's SSP5-8.5 scenario, which assumes no new climate policy and features 20% higher CO2 emissions by 2100), the model found that subglacial discharge increased the sea-level rise contribution of these glaciers by 15.7%, from 19 millimeters (0.74 inches) to 22 millimeters (0.86 inches) by the year 2300.

These glaciers, which are right next to each other, sit atop a continental trench that is more than two miles deep; once their retreat reaches the trench's steep slope, their contribution to sea-level rise is expected to accelerate dramatically. With the added influence of subglacial discharge, the model found that the glaciers retreated past this threshold about 25 years earlier than they did without it.

"I think this paper is a wake up call for the modeling community. It shows you can't accurately model these systems without taking this process into account," said Jamin Greenbaum, co-author of the study and a researcher at Scripps' Institute of Geophysics and Planetary Physics.

A key takeaway, beyond the understudied role of subglacial discharge in accelerating sea-level rise, is the importance of what humanity does in the coming decades to rein in greenhouse gas emissions, said Greenbaum. The low emissions scenario runs of the model did not show the glaciers retreating all the way into the trench and avoided the resulting runaway contributions to sea-level rise.

"If there is a doomsday story here it isn't subglacial discharge," said Greenbaum. "The real doomsday story is still emissions and humanity is still the one with its finger on the button."

In Antarctica, subglacial meltwater is generated from melting that occurs where the ice sits on continental bedrock. The main sources of the heat melting the ice in contact with the ground are friction from the ice grinding across the bedrock and geothermal heat from Earth's interior permeating up through the crust.

Prior research suggested that subglacial meltwater is a common feature of glaciers around the world and that it is present under several other massive Antarctic glaciers, including the infamous Thwaites Glacier in West Antarctica.

When subglacial discharge flows out to sea it is thought to accelerate melting of the glacier's ice shelf - a long floating tongue of ice that extends out to sea beyond the last part of the glacier that is still in contact with solid ground (known as the grounding line). Subglacial discharge is thought to speed up ice shelf melting and glacial retreat by causing ocean mixing that stirs in additional ocean heat within the cavity beneath a glacier's floating ice shelf. This enhanced ice shelf melting then causes the upstream glacier to accelerate, which can drive sea level rise.

The notion that subglacial discharge causes additional ice shelf melting is widely accepted in the scientific community, said Greenbaum. But it hasn't been included in sea-level rise projections because many researchers weren't sure if the process' effect was sufficiently large to increase sea-level rise, mainly because its effects are localized around the glacier's ice shelf.

Pelle said subglacial discharge came onto his radar in 2021 when he and his colleagues observed that East Antarctica's Denman Glacier's ice shelf was melting faster than expected given local ocean temperatures. Puzzlingly, Denman's neighbor Scott Glacier's ice shelf was melting much more slowly despite virtually identical ocean conditions.

To test whether subglacial discharge could reconcile the melt rates seen at the Denman and Scott ice shelves, as well as whether subglacial meltwater might accelerate sea-level rise, the team combined models for three different environments: the ice sheet, the space between the ice sheet and bedrock, and the ocean.

Once the researchers married the three models into one they ran a series of projections up to 2300 using a NASA supercomputer.

The projections featured three main scenarios: a control that featured no additional ocean warming, a low emissions pathway (SSP1-2.6), and a high emissions pathway (SSP5-8.5). For each scenario, the researchers created projections with and without the effect of present-day levels of subglacial discharge.

The model's simulations revealed that adding in subglacial discharge reconciled the melt rates seen at Denman and Scott Glaciers. As for why Scott Glacier was melting so much slower than Denman, Pelle said the model showed that "a strong subglacial discharge channel drained across the Denman Glacier grounding line, while a weaker discharge channel drained across the Scott Glacier grounding line." The strength of the discharge channel at Denman, Pelle explained, was behind its speedy melt.

For the control and low-emissions model runs the contributions to sea-level rise were close to zero or even slightly negative with or without subglacial discharge at 2300. But in a high emissions scenario, the model found that subglacial discharge increased the sea-level rise contribution of these glaciers from 19 millimeters (0.74 inches) to 22 millimeters (0.86 inches) in 2300.

In the high emissions scenario that included subglacial discharge, Denman and Scott Glaciers retreated into the two-mile-deep trench beneath them by 2240, about 25 years earlier than they did in the model runs without subglacial discharge. Once the grounding lines of the Denman and Scott Glaciers retreat past the lip of this trench their yearly sea-level rise contribution explodes, reaching a peak of 0.33 millimeters (0.01 inches) per year - roughly half of the present-day annual sea-level rise contribution of the entire Antarctic ice sheet.

Pelle said the trench's steep slope is behind this explosive increase in sea-level rise contribution. As the glacier retreats down slope, its ice shelf begins losing thicker and thicker slabs of ice from its leading edge. This process of ice loss quickly outpaces ice accumulation at the ice sheet's interior, causing further glacial retreat. Researchers refer to this process as "Marine Ice Sheet Instability," and it can promote explosive ice loss from glaciers like Denman and Scott.

Researchers refer to topography such as the trench beneath Denman and Scott Glaciers as a retrograde slope and worry that it creates a positive feedback loop by which glacial retreat begets more retreat. Large areas of the West Antarctic Ice Sheet, such as Thwaites Glacier, also have retrograde slopes that, while not as dramatic as the Denman-Scott trench, contribute to fears of broader ice sheet instability.

"Subglacial meltwater has been inferred beneath most if not all Antarctic glaciers, including Thwaites, Pine Island, and Totten glaciers," said Pelle. "All these glaciers are retreating and contributing to sea-level rise and we are showing that subglacial discharge could be accelerating their retreat. It's urgent that we model these other glaciers so we can get a handle on the magnitude of the effect subglacial discharge is having."

The researchers behind this study are doing just that. Pelle said they are in the process of submitting a research proposal to extend their new model to the entire Antarctic ice sheet.

Future iterations of the model may also attempt to couple the subglacial environment with the ice sheet and ocean models so that the amount of subglacial meltwater dynamically responds to these other factors. Greenbaum said that the current version of their model kept the amount of subglacial meltwater constant throughout the model runs, and that making it respond dynamically to the surrounding environment would likely make the model more true to life.

"This also means that our results are probably a conservative estimate of the effect of subglacial discharge," said Greenbaum. "That said, we can't yet say how much sea-level rise will be accelerated by this process - hopefully it's not too much."

Part of Greenbaum's upcoming fieldwork in Antarctica, supported by NSF and NASA, aims to directly investigate the impacts of subglacial meltwater in both the East and West Antarctic ice sheets. In collaboration with the Australian Antarctic Division and the Korea Polar Research Institute, Greenbaum and his collaborators will be visiting the ice shelves of Denman and Thwaites Glaciers in East and West Antarctica, respectively, looking for direct evidence that subglacial freshwater is discharging into the ocean beneath the glaciers' ice shelves and contributing to warming.

In addition to Pelle and Greenbaum, the study was co-authored by Christine Dow of the University of Waterloo, Adrian Jenkins of Northumbria University, and Mathieu Morlighem of Dartmouth College.

Research Report:Subglacial discharge accelerates future retreat of Denman and Scott Glaciers, East Antarctica

Related Links
University of California - San Diego
Beyond the Ice Age

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ICE WORLD
Despite record low ice, nations again fail to agree Antarctic reserves
Bangkok (AFP) Oct 27, 2023
A multinational group on Antarctic conservation failed to break a years-long deadlock and agree new marine reserves in the region, despite record low ice, environmental groups said Friday. The Commission for the Conservation of Antarctic Marine Living Resources ended a fortnight of meetings in Australia once again unable to reach a deal on three new marine protected areas (MPAs). The proposed sanctuaries around Antarctica would safeguard nearly four million square kilometres (1.5 million square ... read more

ICE WORLD
As Otis toll climbs, Mexicans criticize government response

Four Japan nuclear plant workers splashed with tainted water

U.N. urges opening of 2nd border crossing into Gaza as need for aid grows

North China Electric Power University's innovative solutions for Fukushima radioactive water crisis

ICE WORLD
The tech to recycle clothes is only just being invented

Shape-shifting fiber can produce morphing fabrics

Space rocks and asteroid dust are pricey, but these aren't the most expensive materials used in science

WVU research advances 3D printing applications in microgravity for sustainable space missions

ICE WORLD
Search on for Australian surfer's body after shark attack

Storms swell Iguazu falls to near decade-high flow

Ocean warming is accelerating, with hotspots taking the brunt

Humans are disrupting natural 'salt cycle' on a global scale, new study shows

ICE WORLD
Increased West Antarctic ice sheet melting 'unavoidable'

Light, freshwater sticks to Greenland's east coast

Despite record low ice, nations again fail to agree Antarctic reserves

Meltwater flowing beneath Antarctic glaciers may be accelerating their retreat

ICE WORLD
Bjork, Rosalia team up against Iceland fish farms

Adding crushed rock to farmland pulls carbon out of the air

Producing more food and storing more carbon

Drought and shrinking herds push US beef prices through the roof

ICE WORLD
Company guilty over New Zealand volcano disaster

Flooding, heavy rain kill three in Vietnam

Central America braces for Tropical Storm Pilar

Armed residents guard streets in Mexico's hurricane-hit Acapulco

ICE WORLD
One year on, peace holds in Tigray but Ethiopia still fractured

Divisive legacy of a British army base in Kenya

Sudan peace talks resume in Jeddah with limited goals

PM Abiy says Ethiopia will 'not pursue interests through war'

ICE WORLD
Eternal rest -- at the foot of a tree

Iraq dig unearths 2,700-year-old winged sculpture largely intact

Hope, heartbreak after Hong Kong court decision on LGBTQ partnerships

Indigenous Australians denounce 'shameful' referendum result

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.