. | . |
Microorganisms in the subsurface seabed on evolutionary standby by Staff Writers Aarhus C, Denmark (SPX) Mar 21, 2017
Researchers at the Center for Geomicrobiology at Aarhus University, Denmark, have sequenced the genomes of several microorganisms inhabiting the subsurface seabed in Aarhus Bay. The results reveal the extreme evolutionary regime controlling microbial life in the deep biosphere. Microbial evolution is arrested in the subsurface seabed as cells are buried in under a continuously growing layer of deposited mud and their genetic material therefore remains unchanged during the millennia. "This means that these buried microorganisms presumably have a very low adaptability, unlike the microbial life that otherwise surrounds us in our environment" says Kasper U. Kjeldsen, associate professor at the Center for Geomicrobiology, who participated in the research project. Through genetic mutations microorganisms normally have the ability to develop new properties over a short time scale, thereby quickly adapting in response to their environment. But the researchers have shown that microbes grow in slow motion in the deep seabed with generation times of up to 100 years. Mutations therefore appear and spread very slowly in the subsurface populations. For comparison, intestinal bacteria typically have generation times of 20 minutes. The microorganisms in the deep seabed live in an environment, which is extremely poor in food. Put simply, they chew on a lunch box, which has fed their ancestors for thousands of years, and the availability of energy is therefore minimal.
Buried alive It remains a mystery why these microorganisms have an inherent ability to grow under the extreme conditions that occur in the deep seabed. The researchers hope that the new findings could ultimately help us to understand and reconstruct past environmental and climatic conditions based on analysis of the microbial species composition in deep marine sediment cores. The discovery, which has changed our understanding of microbial life in the soil deep biosphere, was recentlt published in the highly acclaimed international journal Proceedings of the National Academy of Sciences of the United States America (PNAS).
Panama City, Panama (SPX) Mar 21, 2017 Dead zones affect dozens of coral reefs around the world and threaten hundreds more according to a new study by Smithsonian scientists published in Proceedings of the National Academy of Sciences. Watching a massive coral reef die-off on the Caribbean coast of Panama, they suspected it was caused by a dead zone--a low-oxygen area that snuffs out marine life--rather than by ocean warming or acidi ... read more Related Links Aarhus University Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |