. Earth Science News .
WATER WORLD
Midwater ocean creatures use nanotech camouflage
by Staff Writers
Durham NC (SPX) Oct 31, 2016


Phronima is a crustacean that lives in the twilight zone of the ocean, where there is nowhere to hide from predators. In addition to being nearly transparent, a new study has found that she and other midwater crustaceans carry an anti-reflective optical coating that may be made of living bacteria. At top left is the hollowed out shell of her prey, the salp, which becomes a floating nest to raise her babies, one of which is below her tail. Image courtesy Laura Bagge, Duke University. For a larger version of this image please go here.

Crustaceans that thrive in the vastness of the open ocean have no place to hide from their predators. Consequently, many creatures that live at depths where sunlight fades to darkness have developed transparent bodies to be less visible when spotted against the twilight by upward-looking predators. But they also face predators with bioluminescent searchlights that should cause the clear animals to flash brightly, just like shining a flashlight across a window pane.

Well, it turns out the midwater crustaceans have camouflage for that too. A new study from Duke University and the Smithsonian Institution has found that these midwater hyperiid amphipods are covered with anti-reflective coatings on their legs and bodies that can dampen the reflection of light by 250-fold in some cases and prevent it from bouncing back to a hungry lantern fish's eye.

Weirder still, these coatings appear to be made of living bacteria. When viewed under an electron microscope, the optical coating appears as a sheet of fairly uniform beads, smaller than the wavelength of light. "This coating of little spheres reduces reflections the same way putting a shag carpet on the walls of a recording studio would soften echoes," said study leader Laura Bagge, a Ph.D. candidate at Duke working with biologist Sonke Johnsen.

The spheres range from 50 to 300 nanometers in diameter on different species of amphipod, but a sphere of 110 nm would be optimal, resulting in up to a 250-fold reduction in reflectance, Bagge calculated. "But every size of these bumps helps."

Adding to the impression that the spheres might be bacteria, they are sometimes connected with a net of filaments like a biofilm. Each of the seven amphipod species Bagge looked at appears to have its own species of symbiotic optical bacteria. But that's not a sure thing yet.

"They have all the features of bacteria, but to be 100 percent sure, we're going to have to perform an in-depth sequencing project," Bagge said. That project is already underway.

If the spheres are bacteria, they're very small ones. But it's not hard to imagine the natural selection - having your host spotted and eaten - that would drive the microbes to an optimal size, said research zoologist Karen Osborn of the Smithsonian National Museum of Natural History, who provided some of the species for this study.

If the optical coating is alive, the researchers will have to figure out how this symbiotic relationship got started in the first place.

Crustaceans molt to grow, shedding the old shell and perhaps its attendant anti-reflective bacteria. But Osborn thinks it would be pretty easy to re-seed the animal's new shell. "In that whole process, they're touching the old carapace." There's also a species of hyperiid, Phronima, that raises its young in a little floating nest hollowed out of the body of a salp. In that case, the kids could adopt mom's anti-reflective bacteria pretty easily, Osborn said.

Another amphipod species, Cystisoma, also extrudes brush-like structures on the exoskeleton of its legs which are just the right size and shape to serve the same purpose as the antireflective spheres. At up to six inches in length, Cystisoma has a serious need for stealth.

"They're remarkably transparent," Osborn said. "Mostly you see them because you don't see them. When you pull up a trawl bucket packed full of plankton, you see an empty spot - why is nothing there? You reach in and pull out a Cystisoma. It's a firm cellophane bag, essentially."

"We care about this for the basic biology," Bagge said. But the discovery of living anti-reflective coatings may have technological applications as well. Reflection-reducing "nipple arrays" are being used in the design of glass windows and have also been found in the eyes of moths, apparently to help them see better at night.

Research paper: "Nanostructures and Monolayers of Spheres Reduce Surface Reflections in Hyperiid Amphipods," Laura Bagge, Karen Osborn, Sonke Johnsen. Current Biology, Oct. 27, 2016. DOI: 10.1016/j.cub.2016.09.033


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Duke University
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
How sharks recycle toxic ammonia to keep their skin moist
Vancouver, Canada (SPX) Oct 31, 2016
The Pacific spiny dogfish shark is a master at recycling the ocean's toxic ammonia and converting it into useful urea, according to new research from University of British Columbia (UBC) zoologists. Animals typically eat protein in order to grow, but sharks also require protein to continually replenish urea in their tissues. The urea - the non-toxic nitrogen-containing substance which huma ... read more


WATER WORLD
What happens when people are treated like pollution

Italy PM vows to rebuild quake region

Louvre could house treasures from Iraq, Syria: Hollande

Behind front lines, Iraq's devout food delivery army

WATER WORLD
With new model, buildings may 'sense' internal damage

3-D-printed permanent magnets outperform conventional versions, conserve rare materials

New tech uses electricity to track water, ID potential problems in concrete

Nickel-78 is a doubly magic isotope supercomputer confirms

WATER WORLD
Conundrum of missing iron in oxygen minimum zones solved

Researchers test shark detection sonar technology in Australia

Early Pacific seafarers likely latched onto El Nino and other climate patterns

Midwater ocean creatures use nanotech camouflage

WATER WORLD
Arctic found to play unexpectedly large role in removing nitrogen

Factors promoting growth of cryoconite granule formation and glacial-ice sheet melting

Nepal drains risky glacial lake near Everest

Long-Serving DSCS Satellite Takes Over Role of Linking Antarctic Researchers to the World

WATER WORLD
ChemChina extends Syngenta offer after EU launches probe

Researchers root for more cassava research

3,000 Italian farms 'need quake help'

The buzz about edible bugs: Can they replace beef

WATER WORLD
Italy's experts warn of more quakes

Hurricane Matthew damages in Haiti tally nearly $2 bn

Egypt floods killed at least 22: new toll

Italy in 'miraculous' earthquake escape

WATER WORLD
Elephant poaching costs Africa tourism $25mn: study

Burkina president calls on army to remain 'neutral'

Mediator talks with Mozambique opposition leader cancelled

Shabaab takes Somali town after Ethiopia troop pullout

WATER WORLD
Ancient human history more complex than previously thought

Europeans and Africans have different immune systems, and neanderthals are partly to thank

Study finds earliest evidence in fossil record for right-handedness

Extensive heat treatment in Middle Stone Age silcrete tool production in South Africa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.