. | . |
Minimally Invasive "Stentrode" Shows Potential as Neural Interface for Brain by Staff Writers Washington DC (SPX) Feb 17, 2016
A DARPA-funded research team has created a novel neural-recording device that can be implanted into the brain through blood vessels, eliminating the need for invasive surgery and the risks associated with breaching the blood-brain barrier. The technology was developed under DARPA's Reliable Neural-Interface Technology (RE-NET) program, and offers new potential for safely expanding the use of brain-machine interfaces (BMIs) to treat physical disabilities and neurological disorders. In an article published in Nature Biotechnology, researchers in the Vascular Bionics Laboratory at the University of Melbourne led by neurologist Thomas Oxley, M.D., describe proof-of-concept results from a study conducted in sheep that demonstrate high-fidelity measurements taken from the motor cortex-the region of the brain responsible for controlling voluntary movement-using a novel device the size of a small paperclip. This new device, which Oxley's team dubbed the "stentrode," was adapted from off-the-shelf stent technology-a familiar therapeutic tool for clearing and repairing blood vessels-to include an array of electrodes. The researchers also addressed the dual challenge of making the device flexible enough to safely pass through curving blood vessels, yet stiff enough that the array can emerge from the delivery tube at its destination. Whereas traditional electrode arrays are implanted into the brain through a surgical procedure that requires opening the skull, the stentrode is delivered via catheter angiography, a much lower-risk procedure. The catheter is inserted into a blood vessel in the neck. Researchers then use real-time imaging to guide the stentrode to a precise location in the brain, where the stentrode then expands and attaches to the walls of the blood vessel to read the activity of nearby neurons. The stentrode technology leverages well-established techniques from the field of endovascular surgery, which uses blood vessels as portals for accessing deep structures while greatly reducing trauma associated with open surgery. Endovascular techniques are routinely used for surgical repair of damaged blood vessels and for installation of devices such as stents and stimulation electrodes for cardiac pacemakers. For this study, the research team placed the stentrode in a superficial cortical vein overlying the motor cortex, where it could detect electrical signals generated by upper motor neurons in the brain that signal information about movement. "DARPA has previously demonstrated direct brain control of a prosthetic limb by paralyzed patients fitted with penetrating electrode arrays implanted in the motor cortex during traditional open-brain surgery," said Doug Weber, the program manager for RE-NET. "By reducing the need for invasive surgery, the stentrode may pave the way for more practical implementations of those kinds of life-changing applications of brain-machine interfaces." The published results demonstrate measurement of brain signals with the stentrode that are quantitatively similar to measurements made by commercially available surface electrocorticography arrays implanted during open-brain surgery. Additionally, the study achieved chronic recordings in freely moving sheep for up to 190 days, indicating that implantation of the device could be safe for long-term use. The research team is planning the first in-human trial of the stentrode in 2017 at the Royal Melbourne Hospital in Melbourne, Australia.
Related Links Reliable Neural-Interface Technology at DARPA All About Human Beings and How We Got To Be Here
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |