. Earth Science News .
Monitoring Contaminants In Water Systems In Real Time

The WaterSentinel Program is being developed in partnership with select cities and laboratories in response to a Homeland Security Presidential Directive that charges the EPA to develop surveillance and monitoring systems to provide early detection of water contamination. Photo courtesy of AFP.
by Staff Writers
Albuquerque NM (SPX) Oct 11, 2006
Sandia National Laboratories researchers are working with the U.S. Environmental Protection Agency (EPA), University of Cincinnati and Argonne National Laboratory to develop contaminant warning systems that can monitor municipal water systems to determine quickly when and where a contamination occurs.

It's all part of the EPA's Threat Ensemble Vulnerability Assessment (TEVA) program to counter threats against water systems. The program uses a computational framework containing a suite of software tools that can simulate threats and identify vulnerabilities in drinking water systems, measure potential public health impacts, and evaluate mitigation and response strategies.

The EPA became particularly concerned about potential water system contamination after the Sept. 11, 2001 attacks on Washington, D.C. and New York.

U.S. water systems consist of large networks of storage tanks, valves, and pipes that transport clean water to customers over vast areas. By the very nature of their design, they provide multiple points for potential contamination -- either accidental or intentional.

Sandia is a National Nuclear Security Administration laboratory.

"Our involvement dates back about three years ago when the EPA became aware of some LDRD [internally-funded Laboratory Directed Research and Development program] research we were doing to model threat assessments to water systems," says Sean McKenna, Sandia project researcher. "We started working with the EPA in March 2003."

During the ensuing three years, the collaborative team created world-class software to address water security issues. The software can aid in the placement of sensors during the design stage of a contaminant warning system. It can also determine when and where a contamination event happens, track changes, and determine when the event is over.

"Through careful adaptation of classical algorithms, we are able to solve sensor placement problems on networks that are 100 times larger than those previously cited in the water security literature," says Jon Berry, who works on sensor placement methods for the project. "Our team recognized and exploited mathematical structure that hadn't been associated with water security before."

Bill Hart, Sandia project lead, says the software "helped the EPA meet several internal milestones over the past year," including developing a contaminant incident timeline for the EPA's WaterSentinel program and working with a large city water utility to determine the best locations for sensor placement. The WaterSentinel Program is being developed in partnership with select cities and laboratories in response to a Homeland Security Presidential Directive that charges the EPA to develop surveillance and monitoring systems to provide early detection of water contamination.

The EPA will test Sandia's event detection methods later this summer at a large water system.

"These tests [that the EPA will conduct] will assess the event detection methods so that we can better understand how to respond more intelligently to contaminations as they occur," Hart says.

Sandia is also leveraging this project with another research project funded by the American Water Works Association Research Foundation to develop a sensor simulator that offers a more complete understanding of how contaminant warning systems may ultimately function when operated in water distribution systems. Sandia researchers are developing a software algorithm that mimics the performance of water quality sensors in common use today.

Sensor characteristics such as noise, drift, and sampling frequency are incorporated into a user-friendly software module that enables system designers to assess on-line data signals for event detection that also take into account imperfect sensors and changing water quality baselines that are encountered during routine system operation.

The event detection methods and its sensor simulator have been specifically tailored for use with a variety of affordable, off-the-shelf sensors commonly used by water utilities to monitor water quality.

Related Links
DOE/Sandia National Laboratories
Our Polluted World and Cleaning It Up

Canadin Prime Minister Says New Clean Air Act Coming
Ottawa (AFP) Oct 10, 2006
Canadian Prime Minister Stephen Harper said Tuesday his government would unveil a tough law next week to curb air pollution and greenhouse gases that cause global warming, but only in the long term. "Canada's clean air act will allow us to move industry from voluntary compliance to strict regulation. It will replace the current ad hoc patchwork system with clear, consistent and comprehensive national standards," Harper told reporters.







  • Inter-Korean Projects In Jeopardy
  • British Experts Smoke Out Hi-Tech Help For Fire Rescue
  • Year Of 'Quake Jihad' For Pakistan Militants
  • Musharraf Slams Oxfam Over Pakistan Quake Warning

  • Asia-Pacific Faces Global Warming Disaster
  • Global Warming Will Alter Character Of The Northeast
  • Arctic Sea Ice Declines Again In 2006
  • Arctic Fever Getting Hotter

  • NASA Satellite Data Helps Assess the Health of Florida's Coral Reef
  • Alcatel Alenia Space To Build SIRAL-2 Radar Altimeter For CryoSat-2
  • Earth from Space: The French Frigate Shoals
  • European Microsatellite Playing Major Role In Scientific Studies

  • Russian Export Blend Could Replace Urals Crude As Main Index Setter
  • Russia-Germany Energy Cooperation Could Be Extended
  • Can Colorado Oil Shale Ease America Energy Woes
  • Sandia Selected As National Center for Solid-State Lighting Research

  • West Java Goes Own Way On Avian Flu Management
  • A Biocontrol Agent Which Doesn't Trigger Antibiotic Resistance
  • US, Australian Scientists Develop Vaccine Against Deadly Viruses
  • 'Killer' B Cells Provide New Link In The Evolution Of Immunity

  • Bacteria Do Not Have Species
  • Grant Awarded To Study Interaction Of Ecology And Evolution
  • The Running Out Of Energy And Dropping Dead Theory Of Life Challenged
  • Study Pinpoints Tropics As Biodiversity Spawning Ground

  • Canadin Prime Minister Says New Clean Air Act Coming
  • Monitoring Contaminants In Water Systems In Real Time
  • EU Lawmakers Uphold Environmentalist Approach On Chemicals
  • Manganese Can Keep Toxic Hydrogen Sulfide Zones In Check In Aquatic Systems

  • More Than Meets The Human Eye
  • Chinese Oldest Academy Celebrates 1,030 Years
  • Identity Of Ancient Child Skeleton Found In Ethiopia Challenged
  • Family Tree Of Confucius Has One And A Half Million Members

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement