. Earth Science News .
More Than Meets The Human Eye

"It turns out that eye movements not only help with image stabilization, but that this additional input also plays a fairly important role for the perception of objects in the face of all the challenges that real life visual scenes pose - that objects are obscured or are moving, and so on," - Ziad Hafed.
by Staff Writers
La Jolla CA (SPX) Oct 10, 2006
Ever watch a jittery video made with a hand-held camera that made you almost ill? With our eyes constantly darting back and forth and our body hardly ever holding still, that is exactly what our brain is faced with. Yet despite the shaky video stream, we usually perceive our environment as perfectly stable.

Not only does the brain find a way to compensate for our constantly flickering gaze, but researchers at the Salk Institute for Biological Studies have found that it actually turns the tables and relies on eye movements to recognize partially hidden or moving objects. Their findings will be published in a forthcoming issue of Nature Neuroscience.

"You might expect that if you move your eyes, your perception of objects might get degraded," explains senior author Richard Krauzlis, Ph.D., an associate professor in the Systems Neurobiology Laboratory at the Salk Institute. "The striking thing is that moving your eyes can actually help resolve ambiguous visual inputs."

Our eyes move all the time, whether to follow a moving object or to scan our surroundings. On average, our eyes move several times a second - in fact, in a lifetime, our eyes move more often than our heart beats. "Nevertheless, you don't have the sense that the world has just swept across or rotated around you. You sense that the world is stable," says Krauzlis.

Just like high-end video cameras, the brain relies on an internal image stabilization system to prevent our perception of the world from turning into a blurry mess. Explains lead author Ziad Hafed, Ph.D. "Obviously, the brain has found a solution. In addition to the jumpy video stream, the visual system constantly receives feedback about the eye movements that the brain is generating."

Hafed and Krauzlis took the question of how the brain is able to maintain perception under less than optimal circumstances one step further. "If you think of the video stream as a bunch of pixels coming in from the eyes, the real challenge for the visual system is to decide which pixels belong to which objects. We wondered whether information about eye movements is used by the brain to solve this difficult problem," says Hafed, who is an NSERC (Canada) and Sloan-Swartz post-doctoral researcher at the Salk Institute.

Krauzlis explains that the human brain recognizes objects in everyday circumstances because it is very good at filling in missing visual information. "When we see a deer partially hidden by tree trunks in a forest, we can still segment the visual scene and properly interpret the individual features and group them together into objects," he says.

However, even though recognizing that deer is effortless for us, it is not a trivial accomplishment for the brain. Teaching computers to recognize objects in real life situations has proven to be an almost insurmountable problem. Artificial intelligence researchers have spent much time and effort trying to design robots that can recognize objects in unconstrained situations, but so far, their success has been limited.

To determine whether eye movements actually help the brain recognize objects, Hafed and Krauzlis asked whether people perceived an object better when they actively moved their eyes or when they stared at a given point in space. Human subjects watched a short video that allowed them to glimpse a partially hidden chevron shape that moved in a circle.

When they kept their eyes still by fixating on a stationary spot, observers perceived only random lines moving up and down. But when they moved their eyes such that the input video streams through them were unaltered, viewers easily recognized the lines as a circling chevron.

"It turns out that eye movements not only help with image stabilization, but that this additional input also plays a fairly important role for the perception of objects in the face of all the challenges that real life visual scenes pose - that objects are obscured or are moving, and so on," says Hafed.

Related Links
Salk Institute
All About Human Beings and How We Got To Be Here

Chinese Oldest Academy Celebrates 1,030 Years
Changsha (XNA) Oct 04, 2006
More than 1,000 teachers, students and alumni gathered on Tuesday in central China to mark the 1,030th anniversary of the founding of Yuelu Academy, China's oldest learning institution that is now affiliated to Hunan University. Established in 976, the Yuelu Academy is one of the most famous academies in ancient China. It became a school of higher learning in 1903 and became part of Hunan University in 1926.







  • British Experts Smoke Out Hi-Tech Help For Fire Rescue
  • Year Of 'Quake Jihad' For Pakistan Militants
  • Musharraf Slams Oxfam Over Pakistan Quake Warning
  • Pakistan Earthquake Reconstruction On Track

  • Asia-Pacific Faces Global Warming Disaster
  • Global Warming Will Alter Character Of The Northeast
  • Arctic Sea Ice Declines Again In 2006
  • Arctic Fever Getting Hotter

  • NASA Satellite Data Helps Assess the Health of Florida's Coral Reef
  • Alcatel Alenia Space To Build SIRAL-2 Radar Altimeter For CryoSat-2
  • Earth from Space: The French Frigate Shoals
  • European Microsatellite Playing Major Role In Scientific Studies

  • Can Colorado Oil Shale Ease America Energy Woes
  • Sandia Selected As National Center for Solid-State Lighting Research
  • Air Force Making Progress On Alternative Fuels
  • Norway Plans Three-Billion-Dollar Fund For Renewables

  • West Java Goes Own Way On Avian Flu Management
  • A Biocontrol Agent Which Doesn't Trigger Antibiotic Resistance
  • US, Australian Scientists Develop Vaccine Against Deadly Viruses
  • 'Killer' B Cells Provide New Link In The Evolution Of Immunity

  • Grant Awarded To Study Interaction Of Ecology And Evolution
  • The Running Out Of Energy And Dropping Dead Theory Of Life Challenged
  • Study Pinpoints Tropics As Biodiversity Spawning Ground
  • We Are All Microbes - Part Two

  • Manganese Can Keep Toxic Hydrogen Sulfide Zones In Check In Aquatic Systems
  • Russian Monitoring Stations Report Normal Radiation Levels Following NK Test
  • Canada Will Not Buy Pollution Rights
  • Tonnes Of Garbage Dumped, Thousands Get Lost On Tiananmen Square

  • More Than Meets The Human Eye
  • Chinese Oldest Academy Celebrates 1,030 Years
  • Identity Of Ancient Child Skeleton Found In Ethiopia Challenged
  • Family Tree Of Confucius Has One And A Half Million Members

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement