. | . |
|
. |
by Staff Writers Los Angeles CA (SPX) Sep 16, 2011
For the first time, scientists at USC have unlocked a mechanism behind the way short- and long-term motor memory work together and compete against one another. The research - from a team led by Nicolas Schweighofer of the Division of Biokinesiology and Physical Therapy at USC - could potentially pave the way to more effective rehabilitation for stroke patients. It turns out that the phenomenon of motor memory is actually the product of two processes: short-term and long-term memory. If you focus on learning motor skills sequentially - for example, two overhand ball throws - you will acquire each fairly quickly, but are more likely to forget them later. However, if you split your time up between learning multiple motor skills - say, learning two different throws - you will learn them more slowly but be more likely to remember them both later. This phenomenon, called the "contextual interference effect," is the result of a showdown between your short-term and long-term motor memory, Schweighofer said. Though scientists have long been aware of the effect's existence, Schweighofer's research is the first to explain the mechanism behind it. "Continually wiping out motor short-term memory helps update long-term memory," he said. In short, if your brain can rely on your short-term motor memory to handle memorizing a single motor task, then it will do so, failing to engage your long-term memory in the process. If you deny your brain that option by continually switching from learning one task to the other, your long-term memory will kick in instead. It will take longer to learn both, but you won't forget them later. "It is much more difficult for people to learn two tasks," he said. "But in the random training there was no significant forgetting." Schweighofer uncovered the mechanism while exploring the puzzling results of spatial working memory tests in individuals who had suffered a brain stroke. Those individuals, whose short-term memory is damaged from the stroke, show better long-term retention because they are forced to rely on their long-term memories. Schweighofer's paper appears in the August issue of Journal of Neurophysiology. In the long term, he said he hopes this research could help lead to computer programs that optimize rehabilitation for stroke patients, determining what method of training will work best for each individual. Related Links University of Southern California All About Human Beings and How We Got To Be Here
|
. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |