Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
Mutant champions save imperiled species from extinction
By Sandra Hines for UW News
Seattle WA (SPX) Feb 25, 2013


Tiny wells, each about the size of an eraser on the end of a pencil, hold individual populations of E. coli either evolving or succumbing to different levels of an antibiotic which has a red-orange hue. S Hammarlund/U of Washington.

Species facing widespread and rapid environmental changes can sometimes evolve quickly enough to dodge the extinction bullet. Populations of disease-causing bacteria evolve, for example, as doctors flood their "environment," the human body, with antibiotics. Insects, animals and plants can make evolutionary adaptations in response to pesticides, heavy metals and overfishing.

Previous studies have shown that the more gradual the change, the better the chances for "evolutionary rescue" - the process of mutations occurring fast enough to allow a population to avoid extinction in changing environments. One obvious reason is that more individuals remain alive when change is gradual or moderate, meaning there are more opportunities for a winning mutation to emerge.

Now University of Washington biologists using populations of microorganisms have shed light for the first time on a second reason. They found that the mutation that wins the race in the harshest environment is often dependent on a "relay team" of other mutations that came before, mutations that emerge only as conditions worsen at gradual and moderate rates.

Without the winners from those first "legs" of the survival race, it's unlikely there will even be a runner in the anchor position when conditions become extreme.

"That's a problem given the number of factors on the planet being changed with unprecedented rapidity under the banner of climate change and other human-caused changes," said Benjamin Kerr, UW assistant professor of biology.

Kerr is corresponding author of a paper in the advance online edition of Nature the week of Feb. 9.

Unless a species can relocate or its members already have a bit of flexibility to alter their behavior or physiology, the only option is to evolve or die in the face of challenging environmental conditions, said lead author Haley Lindsey of Seattle, a former lab member. Other co-authors are Jenna Gallie, now with ETH Zurich, the Swiss Federal Institute of Technology, and Susan Taylor of Seattle.

The species studied was Escherichia coli, or E. coli, a bacterium commonly found in the lower intestine and harmless except for certain strains that cause food-poisoning sickness and death in humans. The UW researchers evolved hundreds of populations of E.coli under environments made ever more stressful by the addition of an antibiotic that cripples and kills the bacterium. The antibiotic was ramped up at gradual, moderate and rapid rates.

Mutations at known genes confer protection to the drug. Researchers examined these genes in surviving populations from gradual- and moderate-rate environments, and found multiple mutations.

Using genetic engineering, the scientists pulled out each mutation to see what protectiveness it provided on its own. They found some were only advantageous at the lower concentration of the drug and unable to save the population at the highest concentrations. But those mutations "predispose the lineage to gain other mutations that allow it to escape extinction at high stress," the authors wrote.

"That two-step path leading to the double mutant is not available if a population is immersed abruptly into the high-concentration environment," Kerr said. For populations in that situation, there were only single mutations that gave protection against the antibiotic.

"The rate of environmental deterioration can qualitatively affect evolutionary trajectories," the authors wrote. "In our system, we find that rapid environmental change closes off paths that are accessible under gradual change."

The work was funded by the National Science Foundation, including money through the consortium known as the Beacon Center for the Study of Evolution in Action, and UW Royalty Research Funds.

The findings have implications for those concerned about antibiotic-resistant organisms as well as those considering the effects of climate and global change, Kerr said. For instance, antibiotics found at very low concentrations in industrial and agricultural waste run-off might be evolutionarily priming bacterial populations to become drug resistant even at high doses.

As for populations threatened by human-caused climate change, "our study does suggest that there is genuine reason to worry about unusually high rates of environmental change," the authors wrote. "As the rate of environmental deterioration increases, there can be pronounced increases in the rate of extinction."

.


Related Links
University of Washington
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
Minnesota mulls wolf hunting moratorium
Minneapolis (UPI) Feb 22, 2013
A bill introduced this week in Minnesota would prohibit hunting and trapping wolves in the state for at least five years, lawmakers said. Hunting would be allowed to resume after the end of the moratorium only if population management was "deemed necessary" and other means for controlling the wolf population are explored, the bill's supporters said. "The people of Minnesota don't ... read more


FLORA AND FAUNA
Rio meet focuses on using science to root out poverty

British PM sparks concern with aid budget proposals

Swiss Re posts 61% profit rise in 2012

Four guilty of manslaughter in Italy quake trial

FLORA AND FAUNA
A Semiconductor 'Nano-Shish-Kebabs' With 3-D Potential

That's the way the droplets adhere

Acoustic-assisted magnetic information storage

DARPA Seeks to Defuse the Threat of Ionizing Radiation

FLORA AND FAUNA
EU fisheries council tackles discard ban

Wiring the ocean

Abandoned Russian ship located 2,400 km from Ireland

Research shows pollution doesn't change the rate of droplet formation

FLORA AND FAUNA
Frostbite ends Fiennes winter Antarctic expedition bid

Reduced sea ice disturbs balance of greenhouse gases

Flow of research on ice sheets helps answer climate questions

Extreme winters impact fish negatively

FLORA AND FAUNA
Bees attracted to contrasting colors when looking for nectar

Anthropologist studies cattle ranchers in Brazilian Amazon

Thirsty crops and hungry people: Symposium to examine realities of water security

Experimental vaccine offers improved protection for poultry

FLORA AND FAUNA
Earthquake shakes buildings in Tokyo

Australia's iron ore centre braces for Cyclone Rusty

Thousands isolated by Australian floodwaters

Gold gifts mystify tsunami-wracked Japan city

FLORA AND FAUNA
Regional leaders sign peace deal for eastern DR Congo

Guinea soldiers quit I.Coast village in border dispute

Rising Islamist threat in West Africa

Life expectancy surges in AIDS-hit SAfrican region

FLORA AND FAUNA
Stay cool and live longer?

Zuckerberg, Brin join forces to extend life

Thick hair mutation emerged 30,000 years ago in humans

Tiny mutation had big evolutionary impact




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement