. Earth Science News .
Mysterious Microbe Plays Important Role In Ocean Ecology

The newly described organism seems to be an atypical member of the cyanobacteria, a group of photosynthetic bacteria formerly known as blue-green algae.
by Staff Writers
Washington DC (SPX) Nov 17, 2008
An unusual microorganism discovered in the open ocean may force scientists to rethink their understanding of how carbon and nitrogen cycle through ocean ecosystems. A paper describing the new findings appears in the journal Science.

A research team led by Jonathan Zehr, a marine scientist at the University of California, Santa Cruz, characterized the new microbe by analyzing its genetic material, even though researchers have not been able to grow it in the laboratory.

Zehr said the newly described organism seems to be an atypical member of the cyanobacteria, a group of photosynthetic bacteria formerly known as blue-green algae.

"This research has revealed a big surprise about the microbiology of the oceans, and the complex integration of the ocean's nitrogen and carbon cycles," said Philip Taylor, section head in the National Science Foundation (NSF)'s Division of Ocean Sciences, which funded the work.

"The fact that nitrogen fixation in these abundant unicells is decoupled from photosynthesis is intriguing," said Taylor. "This unique adaptation brings up questions about the role of these abundant microbes in the ocean."

Unlike all other known free-living cyanobacteria, this one lacks some of the genes needed to carry out photosynthesis, the process by which plants use light energy to make sugars out of carbon dioxide and water.

The mysterious microbe can do something very important, though: It provides natural fertilizer to the oceans by "fixing" nitrogen from the atmosphere into a form useable by other organisms.

"For it to have such an unusual metabolism is very exciting," Zehr said. "We're trying to understand how something like this can live and grow with so many missing parts."

Earlier research by Zehr's group had revealed surprisingly large numbers of novel nitrogen-fixing cyanobacteria, including the one that is the focus of this study, in the open ocean.

Although 80 percent of Earth's atmosphere is nitrogen, most organisms cannot use it unless it is "fixed" to other elements to make molecules like ammonia and nitrate. Because nitrogen is essential for all forms of life, nitrogen fixation is a major factor controlling overall biological productivity in the oceans.

The new microbe is one of the most abundant nitrogen fixers in many parts of the ocean, Zehr said.

New DNA sequencing technology provided by 454 Life Sciences enabled rapid sequencing of the organism's genome.

"I had begun to suspect that there was something missing in this organism's genome, and the genome sequencing confirmed that," said Zehr.

The results showed that it is missing the entire set of genes needed for photosystem II and carbon fixation, essential parts of the molecular machinery that carries out photosynthesis in plants and cyanobacteria.

"That has multiple implications," Zehr said. "It must have a 'lifestyle' that's very different from other cyanobacteria. Ecologically, it's important to understand its role in the ecosystem and how it affects the balance of carbon and nitrogen in the ocean."

During photosynthesis, photosystem II generates oxygen by splitting water molecules. Because oxygen inhibits nitrogen fixation, most nitrogen-fixing cyanobacteria only fix nitrogen at night, or do it in specialized cells. The lack of photosystem II enables the new microbe to fix nitrogen during the day, Zehr said.

But without photosynthesis, it can't take carbon dioxide from the atmosphere and convert it into sugars. So it's not clear how the new microbe feeds itself. Either it has some way of feeding on organic matter in its environment, or it lives in close association with other organisms that provide it with food, Zehr said.

"It would make a perfect symbiont because it could feed nitrogen to its host and live on the carbon provided by the host," he said.

Photosystem II is large complex of multiple proteins and chlorophyll molecules, but the team was unable to find any of the genes for the photosystem II core proteins. The genes for photosystem I appeared in the sequencing data, as did genes for both photosystems from the small numbers of contaminating cyanobacteria in the sample.

Zehr said he plans to continue research on the new microbe and fill some gaps in the present knowledge.

Efforts are currently underway to map the microbe's presence in the oceans and determine its global abundance.

Zehr is also interested in how its metabolism differs from other known cyanobacteria. If it can be cultured, there may be ways to exploit this organism's unusual metabolism in biotechnology applications, he said.

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
National Science Foundation
Water News - Science, Technology and Politics



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Scientists try to revive Japan's biggest coral reef
Tokyo (AFP) Nov 17, 2008
Scientists are in an unprecedented project to restore Japan's largest coral reef by planting thousands of baby corals growing on tiny ceramic beds.







  • Thousands displaced in Indonesia as quake toll hits six
  • Quake threat to Karachi exposes cracks in system
  • Death toll from China subway collapse rises to seven: state press
  • California gets glimpse of 'Big One'

  • Obama vows to engage world on climate change
  • Somalians face famine on massive scale: Red Cross
  • Carbon Dioxide Levels Already In Danger Zone
  • World Needs Climate Emergency Backup Plan

  • Firefly CubeSat To Study Link Between Lightning And Terrestrial Gamma Ray Flashes
  • Measuring Water From Space
  • Orbital Ships NASA's Orbiting Carbon Observatory Satellite To Launch Site
  • Arctic Sea Ice Decline Shakes Up Ocean Ecosystems

  • Largest permanent CO2 storage in Wyoming
  • China defends investments in DR Congo
  • Russia says pipeline talks with China to resume
  • China's oil demand falls sharply amid global crisis: top producer

  • TB strains more drug-resistant, WHO says
  • Purdue Researcher Invents Molecule That Stops SARS
  • Airport Malaria Causing Concern In The US
  • AIDS vaccines: New hope for problem-plagued path

  • Africa in biggest ever crackdown on wildlife crime
  • Botswana wildlife threatened by human encroachment
  • Fiddler Crabs Reveal Honesty Is Not Always The Best Policy
  • Giant clams make come back in Philippines thanks to science

  • Pollution Of Freshwater Costs The USA At Least $4.3 Billion Annually
  • Italian police find massive illegal waste dump near Naples
  • Smelly effluent mars affluent Dubai's beaches
  • White House defends last-minute deregulation push

  • Parents clasp hands of children in ancient graves
  • Firms scan brain waves to improve ads in Japan
  • Surprising Effects Of Climate Patterns In Ancient China
  • China's media workers not in good physical shape: report

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement