. Earth Science News .
NASA Finds Stronger Storms Change Heat And Rainfall Worldwide

Comma-shaped storm systems in the mid-latitude regions, like the one shown here on the Pacific Northwest coast, produce our everyday weather but also determine the radiation, heat, and water budgets of those regions. This image was taken from the Geostationary Operational Environmental Satellite, Thurs. March 2, 2006.
by Staff Writers
Ithaca NY (SPX) Mar 10, 2006
Studies have shown that over the last 40 years, a warming climate has been accompanied by fewer rain- and snow-producing storms in mid-latitudes around the world, but the storms that are happening are a little stronger with more precipitation.

A new analysis of global satellite data suggests that these storm changes are affecting strongly the Earth's water cycle and air temperatures and creating contrasting cooling and warming effects in the atmosphere.

The mid-latitudes extend from the subtropics (approximately 30� N and S) to the Arctic Circle (66� 30" N) and the Antarctic Circle (66� 30" S) and include pieces of all of the continents with the exception of Antarctica.

George Tselioudis and William B. Rossow, both scientists at NASA's Goddard Institute for Space Studies (GISS) and Columbia University, New York, authored the study that appears in the January issue of the American Geophysical Union's journal, Geophysical Research Letters.

"There are consequences of having fewer but stronger storms in the middle latitudes both on the radiation and on the precipitation fields," Tselioudis said. Using observations from the International Satellite Cloud Climatology Project (ISCCP) and the Global Precipitation Climatology Project (GPCP), Tselioudis and Rossow determined how the changes in intensity and frequency of storms are both cooling and warming the atmosphere around the world.

Fewer and stronger storms in the mid-latitudes affect the radiation field, that is, the solar energy being absorbed and the heat radiation emitted by the Earth. There are two things happening with storms and energy.

The first is that sunlight is reflected back into space from the tops of the clouds, creating a cooling effect at the Earth's surface. Conversely, clouds also act to trap heat radiation and prevent it from escaping into space, creating a warming on the Earth's atmosphere.

A 1998 study of precipitation data for the continental U.S., showed an increase in more extreme rainfall and snowfall events over the previous 70 to 90 years. Further, climate model studies that Tselioudis and others performed in the last few years indicate that additional levels of carbon dioxide will lead to fewer but more potent storms as has been the case in the last 50 years.

In the present study, when a storm change prediction by a leading climate model was examined, the radiation effects of stronger storms were found to be greater than those produced by the related decrease in the number of storms. Fewer storms mean less cloud cover to reflect sunlight and that adds heat to the Earth.

However, more intense storms tend to produce thicker clouds which cool the atmosphere. Tselioudis and Rossow looked at both of those factors, and calculated that the cooling effect is larger than the warming in all months except June, July and August, when the two effects cancel each other.

In terms of precipitation from these storms, the effects of increasing storm intensity also surpass those of decreasing storm frequency. In the northern mid-latitudes, the stronger storms produce 0.05�0.08 millimeter (mm)/day (.002-.003 inch/day) more precipitation.

Although this number seems small, the average precipitation daily in the northern mid-latitudes is only around 2 mm/day (.08 inch/day), implying that the strengthening of the storms produces a 3-4% precipitation increase that comes in the form of more intense rain and snow events.

The long-term changes in sunlight and heat produced by the storms have been hard to observe because scientists only have observations for the last 25 years. Also, there are other things that affect how much sunlight is being reflected and absorbed by the Earth, and those are constantly changing. For example, when black soot falls on snow, the black soot absorbs heat from the sun, whereas the white ice would have reflected most of it.

This study presents a method that uses current climate relationships and climate change model predictions to arrive at more complete estimates of radiation and precipitation changes that may occur in a warmer climate.

Related Links
NASA's Goddard Institute for Space Studies
Columbia University

Impact Of Climate Warming On Polar Ice Sheets Confirmed
Greenbelt MD (SPX) Mar 09, 2006
In the most comprehensive survey ever undertaken of the massive ice sheets covering both Greenland and Antarctica, NASA scientists confirm climate warming is changing how much water remains locked in Earth's largest storehouse of ice and snow. Other recent studies have shown increasing losses of ice in parts of these ice sheets.







  • Boeing/Harvard Custom: US Air Force Search And Rescue Helicopter
  • Delta And Wetlands Management Contributed To Hurricane Problems
  • Agami Systems Eases Access Critical Disaster-Relief Imagery in Near Real-Time
  • Study Finds Californians Unmotivated To Prepare For Next Disaster

  • NASA Finds Stronger Storms Change Heat And Rainfall Worldwide
  • Impact Of Climate Warming On Polar Ice Sheets Confirmed
  • Developing Discussion On Soil Carbon Decomposition
  • Curbing Carbon Dioxide Emissions Affordable And Doable Says Brookings

  • Goodrich Delivers True Color Images On Japanese EO Satellite
  • International Symposium On Radar Altimetry To Meet In Venice
  • Satellites Ensure Safe Passage Through Treacherous Waters In Ocean Race
  • ESA Satellite Program Monitors Dangerous Ocean Eddies

  • Combination Of Processes Results In Cleaner Petrol
  • Spanish Test Out Olives As Energy Source
  • CSIRO Builds Smart Energy System
  • Energy-Efficient Housing: Project Debuts Air-Handling System

  • Bird Flu Damages EU Economies
  • Incentive Plan Targets Neglected Diseases
  • Crippling Indian Ocean Epidemic Detected in France
  • People of African Descent More Vulnerable to TB

  • Bering Sea Ecosystem Responding To Changes In Arctic Climate
  • Mass Extinctions - Outer Space Threat Or Our Own Planets Detox
  • Which Carnivores Kill Other Carnivores
  • Early Land Animals Could Walk And Run Like Mammals

  • Mitigating Air Pollution From Freight Transportation Along I-95
  • Oil Pipeline Breach Sparks One Of Worst Spills In Alaska
  • Buffering Runoff From Dairy Farms
  • New EU Waste Rules May Turn Poor Countries Into Dumps

  • Stuffing Our Kids So They Can Die First
  • Most Human Chimp Differences Due To Gene Regulation Not Genes
  • Humans Are Still Evolving
  • Magdalenian Girl Has Oldest Recorded Case Of Impacted Wisdom Teeth

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement