. | . |
NASA Technology Reduces Some Smokestack Emissions
Hampton - Oct 02, 2003 Thanks to NASA, a new method for reducing smokestack emissions of toxic formaldehyde and carbon monoxide may soon be in use throughout industry. Created for satellite lasers to measure the chemical makeup of the Earth's atmosphere, the smokestack application of Low-Temperature Oxidation Catalysts (LTOC) comes from a collection of technologies that enables the destruction of pollutant gasses, such as carbon monoxide and hydrocarbons, as well as some nitrogen oxides. Developed at NASA's Langley Research Center in Hampton, Va., LTOC technology is expected to reduce formaldehyde and carbon monoxide concentrations in smokestack emissions by approximately 85 to 95 percent. Current pollution remediation technologies are typically very expensive to implement and maintain according to Dr. Jeff Jordan, the LTOC team lead at Langley. "The catalytic-based formaldehyde remediation system will be relatively inexpensive to implement and maintain within continuously operating facilities," said Jordan. "It will reduce the time and cost associated with industrial compliance with current and future Environmental Protection Agency pollution standards." NASA originally called on Langley researchers to develop a technology for space-based carbon-dioxide laser systems. To maintain carbon dioxide lasers in space for atmospheric research, NASA needed a catalyst system that would affect the oxidation of carbon monoxide, a by-product of carbon-dioxide laser operation, under the cold vacuum of space. Although the need for a carbon dioxide laser in space gave way to solid-state lasers, the NASA research team developed an oxidation technology that would work at very low temperatures. LTOC technologies were then adapted for higher temperature applications like smokestack emissions and the internal combustion engine. An automotive catalytic converter using LTOC technology has met initial EPA requirements and California emission standards for the automotive after-market. The LTOC catalytic converter does not require a warm-up period to function and uses significantly less precious metals than current commercial products, which reduces the overall cost of the converter. "Adapting the LTOC technology for pollution remediation applications has been a very exciting and rewarding endeavor that will contribute significantly to improving air quality on a global basis," said Jordan. "It's a goal that is integral to the mission of the NASA agency." Through NASA's technology commercialization program, Automated Controls Technologies, Inc. (A.C.T.) of Fairmont, W. Va., is the exclusive licensee for the NASA LTOC smokestack application. A.C.T. officials expect to have products on the market in early 2004. NASA is still accepting license inquiries for other LTOC applications. Related Links SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Toyota Expands Its Real-World Testing of Fuel Cell Hydrogen Vehicles Sonoma - Sep 30, 2003 Toyota's ability to gain real-world experience for its Fuel Cell Hydrogen Vehicles (FCHV) took another step forward this month when it was announced that two more vehicles would be put into action with the assistance of the University of California, Irvine and the University of California, Davis. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |