. | . |
NASA studies growing Louisiana deltas by Staff Writers Pasadena CA (JPL) Feb 10, 2017
The Louisiana coastline is sinking under the Gulf of Mexico at the rate of about one football field of land every hour (about 18 square miles of land lost in a year). But within this sinking region, two river deltas are growing. The Atchafalaya River and its diversion channel, Wax Lake Outlet, are gaining about one football field of new land every 11 and 8 hours, respectively (1.5 and 2 square miles per year). Last fall, a team from NASA's Jet Propulsion Laboratory in Pasadena, California, showed that radar, lidar and spectral instruments mounted on aircraft can be used to study the growing deltas, collecting data that can help scientists better understand how coastal wetlands will respond to global sea level rise. The basics of delta building are understood, but many questions remain about how specific characteristics, such as vegetation types, tides, currents and the shape of the riverbed, affect a delta's growth or demise. That's partly because it's hard to do research in a swamp. "These factors are usually studied using boats and instruments that have to be transported through marshy and difficult terrain," said Christine Rains of JPL, an assistant flight coordinator for the program. "This campaign was designed to show that wetlands can also be measured with airborne remote sensing over a large area." JPL researchers fly over the Louisiana coastline at least once a year to keep track of subsidence (sinking) and changes in levees. The most recent airborne flights, however, focused on the growing deltas - specifically, flowing water and vegetation. JPL's Marc Simard, principal investigator for the campaign, explained that on a delta, water flows in every direction, including uphill. "Water flows not only through the main channels of the rivers but also through the marshes," he explained. "There is also the incoming tide, which pushes water back uphill. The tide enhances the flow of water out of the main channels into the marshes." When the tide goes out, water drains from the marshes, carrying sediment and carbon. The JPL instruments took measurements during both rising and falling tides to capture these flows. They also made the first complete measurement of the slope of the water surface and topography of the river bottom for both rivers from their origin at the Mississippi River to the ocean - necessary information for understanding the rivers' flow speeds. Some types of marsh vegetation resist flowing water better than others, as the new measurements have documented. Simard said, "We were really surprised and impressed by how the water level changes within the marshes. In some places, the water changes by 10 centimeters [four inches] in an hour or two. In others, it's only three or four centimeters [an inch or inch-and-a-half]. You can see amazing patterns in the remote sensing measurements." Three JPL airborne instruments, flying on three planes, were needed to observe the flows and the movement of carbon with the water. The team measured rising and falling water in vegetated areas using the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument. They measured the same changes in open water with the Airborne Snow Observatory (ASO) lidar. The Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) was used to estimate the sediment, carbon and nitrogen concentrations in the water. Now that the team has demonstrated that these airborne instruments can make precise and detailed measurements in this difficult environment, the researchers plan to use the new data to improve models of how water flows through marshes. Scientists use these models to study how coastal marshes will cope with rising sea levels. With so many measurements available as a reality check, Simard said, "Our models will have to catch up with the observations now." View a slideshow of the growth of the two deltas over the last 30 years:
BOX IT
The Atchafalaya, the Mississippi and unintended consequences
Related Links Earth Observatory at NASA Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |