. | . |
Neural pathway crucial to successful rapid object recognition in primates by Alli Gold for MIT News Boston MA (SPX) Oct 21, 2020
MIT researchers have identified a brain pathway critical in enabling primates to effortlessly identify objects in their field of vision. The findings enrich existing models of the neural circuitry involved in visual perception and help to further unravel the computational code for solving object recognition in the primate brain. Led by Kohitij Kar, a postdoc at the McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, the study looked at an area called the ventrolateral prefrontal cortex (vlPFC), which sends feedback signals to the inferior temporal (IT) cortex via a network of neurons. The main goal of this study was to test how the back-and-forth information processing of this circuitry - that is, this recurrent neural network - is essential to rapid object identification in primates. The current study, published in Neuron and available via open access, is a followup to prior work published by Kar and James DiCarlo, the Peter de Florez Professor of Neuroscience, the head of MIT's Department of Brain and Cognitive Sciences, and an investigator in the McGovern Institute and the Center for Brains, Minds, and Machines.
Monkey versus machine Interestingly, specific images for which models performed poorly compared to monkeys in object identification, also took longer to be solved in the monkeys' brains - suggesting that the additional time might be due to recurrent processing in the brain. Based on the 2019 study, it remained unclear, though, exactly which recurrent circuits were responsible for the delayed information boost in the IT cortex. That's where the current study picks up. "In this new study, we wanted to find out: Where are these recurrent signals in IT coming from?" Kar says. "Which areas reciprocally connected to IT, are functionally the most critical part of this recurrent circuit?" To determine this, researchers used a pharmacological agent to temporarily block the activity in parts of the vlPFC in macaques while they engaged in an object discrimination task. During these tasks, monkeys viewed images that contained an object, such as an apple, a car, or a dog; then, researchers used eye tracking to determine if the monkeys could correctly indicate what object they had previously viewed when given two object choices. "We observed that if you use pharmacological agents to partially inactivate the vlPFC, then both the monkeys' behavior and IT cortex activity deteriorates, but more so for certain specific images. These images were the same ones we identified in the previous study - ones that were poorly solved by 'feed-forward' models and took longer to be solved in the monkey's IT cortex," says Kar. "These results provide evidence that this recurrently connected network is critical for rapid object recognition, the behavior we're studying. Now, we have a better understanding of how the full circuit is laid out, and what are the key underlying neural components of this behavior." The full study, entitled "Fast recurrent processing via ventrolateral prefrontal cortex is needed by the primate ventral stream for robust core visual object recognition," will run in print Jan. 6, 2021. "This study demonstrates the importance of prefrontal cortical circuits in automatically boosting object recognition performance in a very particular way," DiCarlo says. "These results were obtained in nonhuman primates and thus are highly likely to also be relevant to human vision." The present study makes clear the integral role of the recurrent connections between the vlPFC and the primate ventral visual cortex during rapid object recognition. The results will be helpful to researchers designing future studies that aim to develop accurate models of the brain, and to researchers who seek to develop more human-like artificial intelligence.
Climate change likely drove early human species to extinction, modeling study suggests Washington DC (SPX) Oct 19, 2020 Of the six or more different species of early humans, all belonging to the genus Homo, only we Homo sapiens have managed to survive. Now, a study reported in the journal One Earth on October 15 combining climate modeling and the fossil record in search of clues to what led to all those earlier extinctions of our ancient ancestors suggests that climate change - the inability to adapt to either warming or cooling temperatures - likely played a major role in sealing their fate. "Our findings show tha ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |