. Earth Science News .
New Computer Architecture Aids Emergency Response

Ruby Lee aims to build fundamental security features directly into the hardware of a device, whether it is a personal computer, cell phone or PDA. Her researchers are working to build "trust anchors" into computer hardware to which different software can be tethered, to provide important security coverage.
by Staff Writers
Princeton NJ (SPX) Nov 01, 2007
Princeton researchers have invented a computer architecture that enables the secure transmission of crucial rescue information to first responders during events such as natural disasters, fires or terrorist attacks. Electrical engineering professor Ruby Lee said the new architecture allows for what she describes as "transient trust" - the ability to transmit sensitive information to parties on an as-needed basis so that it cannot be intercepted by others and so that access stops as soon as the recipient no longer has a legitimate need for it.

A paper describing the new architecture by Lee and her graduate student Jeffrey Dwoskin will be presented Wed., Oct. 31, at the ACM Computer and Communications Security conference in Alexandria, Va.

Data provided on a transient-trust basis might include floor plans of a building, medical information about occupants, or satellite maps of a given area.

The paper describes SP (Secret Protection) computer architecture, which relies on two new elements that are embedded in the hardware of an electronic device: a "device root key" and a "storage root hash."

A trusted authority such as a municipal Fire Department would initialize a device -- for example, a PDA used by a firefighter - with these features so that during an emergency a firefighter could be given access to relevant floor plans, security codes or other essential information. Once the emergency was over, the access to this sensitive information would end.

This new research emerged from the Princeton Architecture Lab for Multimedia and Security (PALMS) led by Lee, the Forrest G. Hamrick Professor of Engineering. The lab's major focus is "clean-slate" computer architecture design. As chief computer architect at Hewlett-Packard, Lee was a key figure in a revolution in computer architecture that swept through the industry in the 1980s. Since coming to Princeton, Lee has been working to revolutionize computer architecture again.

"Computers were not originally designed with security as a goal," said Lee. "I'm trying to rethink the design of computers so they can be trustworthy while at the same time retain all their original design goals, such as high performance, low cost and energy efficiency."

Lee aims to build fundamental security features directly into the hardware of a device, whether it is a personal computer, cell phone or PDA. Her researchers are working to build "trust anchors" into computer hardware to which different software can be tethered, to provide important security coverage.

Lee said that many researchers do not think it is possible to build security features into computer hardware without slowing the computer down or causing it to consume lots of power. However, research done by her lab demonstrates that this is not the case.

"Our research shows that these hardware 'roots of trust' are actually quite deployable on consumer devices like desktop computers or PDAs, and also in sensor networks and larger servers," said Lee. The work is part of the SecureCore multi-university research project, funded by the NSF Cybertrust program and DARPA, which aims to integrate essential security into the hardware, software and networking at the core of commodity computing and communications devices.

In addition to trust anchors for software, Lee is also researching hardware "safety nets" to defend against software vulnerabilities that remote attackers exploit to gain entry into a computer. The ultimate goal is to inoculate individual computers and electronic devices such as cell phones against threats like viruses, worms and bots so that they cannot infect, or be used to attack, other machines.

Lee's students study all aspects of building more secure microprocessors and hardware. In June, at the IEEE Symposium on Computer Arithmetic, Lee and Yedidya Hilewitz, a graduate student at Princeton, published a paper which proposes a revolutionary design of a fundamental functional unit of microprocessors that greatly expands a computer's ability to perform "advanced bit manipulation operations," which are very useful for fast cryptography and cryptanalysis, as well as for many other applications.

Lee is also studying computer architecture that prevents leakage of information through covert channels and side channels. At the International Symposium on Computer Architecture in June, Zhenghong Wang, one of Lee's graduate students, presented a paper describing a hardware approach to preventing so-called "software side-channel attacks" during which attackers exploit the cache memories that are shared between computer programs to leak secret cryptographic keys.

In September, at the Cryptographic Hardware and Embedded Systems conference, Lee's researchers, Reouven Elbaz and David Champagne, presented a hardware memory integrity solution to rebuff memory replay attacks, where attackers try to trick a computer into accepting material as still legitimate even though it has already been officially deleted.

Lee was a member of the Committee on Improving Cybersecurity Research in the United States, a group charged by the National Research Council with outlining a strategy for cybersecurity research in the 21st century. The committee recently issued a report, Toward a Safer and More Secure Cyberspace, published by the National Academy of Sciences. Section 4.1 of the report, which can be found at the url below, describes the earlier user-centric version of the Secret Protection architecture - rather than the authority-centric version described above for emergency response scenarios. Both were developed by Lee's lab at Princeton.

Community
Email This Article
Comment On This Article

Related Links
Princeton University, Engineering School
Bringing Order To A World Of Disasters
A world of storm and tempest
When the Earth Quakes



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


California gets new 'Big One' reminder
San Francisco (AFP) Oct 30, 2007
A 5.6 magnitude earthquake rattled the San Francisco Bay region late Tuesday giving a new reminder of its vulnerability to a much-forecast "Big One".







  • California gets new 'Big One' reminder
  • New Computer Architecture Aids Emergency Response
  • Acoustic Sensor Being Developed In New Anechoic Chamber
  • California fire victims get lush treatment in shelter

  • Climate controversy heats up Australian election
  • Drought in southeast US fuels battle over water resources
  • White House defends 'health benefits' of climate change
  • Like It Or Not, Uncertainty And Climate Change Go Hand-In-Hand

  • DMCii Satellite Imaging Helps Dramatically Reduce Deforestation Of Amazon Basin
  • NASA Views Southern California Fires And Winds
  • A Roadmap For Calibration And Validation
  • GeoEye Contract With ITT Begins Phased Procurement Of The GeoEye-2 Satellite

  • Analysis: U.S. OK's Saddam law oil deals
  • China to raise price of fuel: report
  • Let There Be Light: New Magnet Design Continues Magnet Lab's Tradition Of Innovation
  • China launches counter-protest against Japan in island dispute

  • Staph-Killing Properties Of Clay Investigated
  • AIDS stunting southern Africa's prospects: Malawi president
  • After extinction fears, Botswana learns to live with AIDS
  • West Nile Virus Spread Through Nerve Cells Linked To Serious Complication

  • Dead Clams Tell Many Tales
  • Could Hairy Roots Become Biofactories
  • Dinosaur Deaths Outsourced To India
  • Ancient Amphibians Left Full-Body Imprints

  • Time Spent In Car Drives Up Air Pollution Exposure
  • Birth defects soar in polluted China
  • Sakhalin II Operator Vows To Fix Environmental Damage In Year
  • Space Sensors Shed New Light On Air Quality

  • World Toilet Summit opens in India
  • Europeans face mob anger over child 'abductions' in Chad
  • India's toilet champion sees human liberation in loos for all
  • Video Game Shown To Cut Cortisol

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement