. | . |
New prediction tool gives warning of rogue waves by Staff Writers Boston MA (SPX) Feb 29, 2016
Sailing history is rife with tales of monster-sized rogue waves - huge, towering walls of water that seemingly rise up from nothing to dwarf, then deluge, vessel and crew. Rogue waves can measure eight times higher than the surrounding seas and can strike in otherwise calm waters, with virtually no warning. Now a prediction tool developed by MIT engineers may give sailors a 2-3 minute warning of an incoming rogue wave, providing them with enough time to shut down essential operations on a ship or offshore platform. The tool, in the form of an algorithm, sifts through data from surrounding waves to spot clusters of waves that may develop into a rogue wave. Depending on a wave group's length and height, the algorithm computes a probability that the group will turn into a rogue wave within the next few minutes. "It's precise in the sense that it's telling us very accurately the location and the time that this rare event will happen," says Themis Sapsis, the American Bureau of Shipping Career Development Assistant Professor of Mechanical Engineering at MIT. "We have a range of possibilities, and we can say that this will be a dangerous wave, and you'd better do something. That's really all you need." Sapsis and former postdoc Will Cousins have published their results this week in the Journal of Fluid Mechanics.
"Not just bad luck" "It's accurate, but it's extremely slow - you cannot run these computations on your laptop," Sapsis says. "There's no way to predict rogue waves practically. That's the gap we're trying to address." Sapsis and Cousins devised a much simpler, faster way to predict rogue waves, given data on the surrounding wave field. In previous work, the team identified one mechanism by which rogue waves form in unidirectional wave fields. They observed that, while the open ocean consists of many waves, most of which move independently of each other, some waves cluster together in a single wave group, rolling through the ocean together. Certain wave groups, they found, end up "focusing" or exchanging energy in a way that eventually leads to an extreme rogue wave. "These waves really talk to each other," Sapsis says. "They interact and exchange energy. It's not just bad luck. It's the dynamics that create this phenomenon."
Going rogue Sapsis and Cousins used the statistical data to quantify the range of wave possibilities, for a given body of water. They then developed a novel approach to analyze the nonlinear dynamics of the system and predict which wave groups will evolve into extreme rogue waves. They were able to predict which groups turned rogue, based on two parameters: a wave group's length and height. The combination of statistics and dynamics helped the team identify the length-scale of a critical wave group, which has the highest likelihood of evolving into a rogue wave. Using this, the team derived a simple algorithm to predict a rogue wave based on incoming data. By tracking the energy of the surrounding wave field over this length-scale, they could immediately calculate the probability of a rogue wave developing. "Using data and equations, we've determined for any given sea state the wave groups that can evolve into rogue waves," Sapsis says. "Of those, we only observe the ones with the highest probability of turning into a rare event. That's extremely efficient to do." Sapsis says the team's algorithm is able to predict rogue waves several minutes before they fully develop. To put the algorithm into practice, he says ships and offshore platforms will have to utilize high-resolution scanning technologies such as LIDAR and radar to measure the surrounding waves. "If we know the wave field, we can identify immediately what would be the critical length scale that one has to observe, and then identify spatial regions with high probability for a rare event," Sapsis says. "If you are performing operations on an aircraft carrier or offshore platform, this is extremely important."
Related Links Massachusetts Institute of Technology Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |