. | . |
New research could help humans see what nature hides by Staff Writers Austin TX (SPX) Jun 28, 2017
Things are not always as they appear. New visual perception research at The University of Texas at Austin, published in the Proceedings of the National Academy of Sciences, explains the natural limits of what humans can see and how to find what nature hides. UT Austin researchers investigated the three main background properties that affect the ability to see objects: the luminance or brightness, the contrast (the variation in luminance) and the similarity of the background to the orientation and shape of the object. Using an experimental and theoretical approach involving analysis of millions of natural images, the researchers found that the ability to detect the differences between the object and the background was predicted directly from the physics of natural stimuli. "The discovery of highly systematic laws for perception in natural scenes - made possible by constrained statistical sampling - is a potential game changer," said the paper's lead author Wilson Geisler, a UT Austin professor of psychology and director of the Center for Perceptual Systems. "It demonstrates how to study complex real-world perception with the same level of rigor that was previously achieved only with simple synthetic stimuli." In order for people to pick out an object against a background, the object must differ from the background by a "just noticeable difference," a threshold quantified by the minimum difference a person can detect the majority of the time. Even as the properties of both the object and the background vary, the threshold remains in constant proportion to the product of the background properties - a generalized version of Weber's law. "The ability of these background properties to mask objects is well known for simple laboratory stimuli," Geisler said. "However, it was not known how these properties combine to mask objects in natural scenes." The researchers considered the effects of stimulus uncertainty. Under real-world conditions, the properties of the object and of the background against which the object appears will randomly vary from one occasion to the next, creating a stimulus uncertainty that can also affect accuracy in detecting the object. Their findings showed that the detrimental effects of this uncertainty can be minimized by estimating the luminance, contrast and similarity at the object's possible locations, and then dividing the neural responses at each of these locations by the product of these estimates. The researchers found strong evidence that these computations are done automatically in the human visual system. Knowing this may lead to improved radiology technology to help radiologists identify abnormalities in the human body; or better security imaging at airports to detect suspicious items in luggage; or enhanced camouflage design to disguise soldiers in war zones, Geisler said. "There are many potential applications of these findings. For example, radiological images are highly complex, like the natural images that drove the evolution of the human visual system. "Thus, the perceptual laws for natural images may predict when a radiologist will have difficulty detecting suspicious objects in a radiological image. These predictions could be used to alert the radiologist to locations where extra scrutiny would be advised," Geisler said.
Pasadena CA (SPX) Jun 27, 2017 Humans are diurnal animals, meaning that we usually sleep at night and are awake during the day, due at least in part to light or the lack thereof. Light is known to affect sleep indirectly by entraining - modifying the length of - our circadian rhythms and also rapidly and directly due to a phenomenon known as masking. But while a great deal is known about how light affects circadian rhyt ... read more Related Links University of Texas at Austin All About Human Beings and How We Got To Be Here
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |