Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
New research decodes virus-host interactions in ocean dead zones
by Staff Writers
Tucson AZ (SPX) Sep 17, 2014


Researchers aboard the MSV John Strickland use a CTD rosette -- an instrument suite measuring salinity, temperature and depth -- to collect water samples and environmental parameter data in Saanich Inlet. Image courtesy Steven Hallam.

A complex web of interaction between viruses, bacteria, and their environment is becoming ever more untangled by a growing international collaboration between Matthew Sullivan, associate professor in the University of Arizona's Department of Ecology and Evolutionary Biology and Steven Hallam from the University of British Columbia in Vancouver, Canada.

"Bacteria are drivers of nutrient and energy cycles that power the earth," Sullivan said. "As the climate is changing, so are the environments these bacteria live in, and they in turn loop back to impact their environments. Viruses are also in the mix mediating microbial processes, but how and to what extent? Those are the questions we are trying to answer."

The latest chapter in understanding this complex ecosystem was led by Simon Roux, a post-doctoral research scientist in Sullivan's lab.

In a study published in a new, non-profit, open-access journal called eLife, Roux focused on viruses and the microbes they infect in the northeast Pacific Ocean, specifically in vast stretches of open ocean depleted of oxygen, which scientists call oxygen minimum zones or OMZs. The work is unprecedented in its breadth and scope and represents some of the first population-based viral ecology in natural systems.

The take away: Marine viruses appear to be much more important to microbial ecology below sunlit surface waters than researchers previously suspected.

"There are, of course, areas with less oxygen scattered throughout the world's oceans," Sullivan said.

"However, the more worrisome OMZs form when oxygen concentrations become limiting to life due to physical processes preventing gas exchange with the atmosphere and microbes respiring to draw down available oxygen."

Sullivan explained that as water columns become increasingly stratified - in other words, no longer mix well - OMZs are expanding and intensifying due to microbial activity that drives chemical transformations resulting in loss of fixed nitrogen that phytoplankton depends on, accumulation of hydrogen sulfide, a chemical toxic to animals and plants, and production of greenhouse gases.

The eLife study focused on a sulfur-oxidizing bacterium called SUP05, which is dominant in OMZs and, like most microbes in the "wild," has not been successfully cultivated in a lab setting.

Using cutting-edge genome sequencing technology, the genomes of 127 single cells were generated and then screened using novel computational approaches to look for virus DNA in these single-cell genomes.

"Ultimately we are interested in understanding is how different microbial groups interact to drive carbon, nitrogen and sulfur cycling in oxygen minimum zones," said UBC microbiologist and co-author Steven Hallam.

"SUP05 is a hub for metabolic coupling in OMZs. By studying viruses that infect SUP05, we're beginning to recognize that viruses can alter the network properties of microbial communities with resulting feedback on nutrient and energy conversion processes, including the production and consumption of climate active gases."

"The last couple of years have seen a spectacular development of the single-cell genome technique, in which scientists are able to isolate one single cell and sequence all of its genetic material," Roux said. "The resulting datasets allow us to clearly identify and directly link virus to host."

From these 127 single-cell genomes, 69 new SUP05 viruses were identified representing 5 viral groups not yet known to science. These new genomes were then used as references to query 186 available environmental microbial and viral sequence datasets to show that these new viruses were persistent over time and largely did not occur outside the study site.

In other words, these viruses and their hosts thrive in oxygen-depleted parts of the ocean where not much else can survive, and they stay there.

Not only did this study reveal the type of viruses that infect these microbes but also features of how these viruses and hosts interact. For one, many SUP05 cells are commonly infected by viruses in nature - about one in three. Second, these SUP05 viruses encode metabolic genes that impact the very functions that these SUP05 bacteria contribute to the OMZ ecosystem - energy and nutrient cycling.

"The finding that viruses could directly manipulate SUP05 sulfur cycling that drives its coupled carbon fixation is critical to developing predictive models about microbial processes in the dark ocean," Sullivan said.

"However, it is becoming less and less surprising as we have known for a decade that viruses encode core photosynthesis genes when they infect photosynthetic cyanobacteria."

Roux and Sullivan are affiliated with the newly launched UA Ecosystem Genomics Institute, led by Scott Saleska, associate professor in ecology and evolutionary biology, which seeks to use modern approaches to build an ecosystems-level understanding of microbial communities in nature. Seed funding for EGI was provided by the UA Technology and Research Initiative Fund through the Water, Environmental and Energy Solutions initiative.

"This study represents a solid first step at doing so in an ocean ecosystem focused on OMZs, whose recent expansion we hope to see reversed," Sullivan said.

.


Related Links
University of Arizona
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
Specialized species critical for reefs
Townsville, Australia (SPX) Sep 16, 2014
One of Australia's leading coral reef ecologists fears that reef biodiversity may not provide the level of insurance for ecosystem survival that we once thought. In an international study published today, Professor David Bellwood from the ARC Centre of Excellence for Coral Reef Studies (Coral CoE) says we need to identify and protect the most important species within reef ecosystems. In co ... read more


WATER WORLD
Tornadoes occurring earlier in "Tornado Alley"

Far more displaced by disasters than conflict: study

Kashmir militants suspend jihad to help flood efforts

At least 17 dead as flood rescue boat capsizes in Pakistan

WATER WORLD
Microsoft powers up game platform with 'Minecraft'

Researchers control surface tension to manipulate liquid metals

Scientists twist radio beams to send data

Angling chromium to let oxygen through

WATER WORLD
Scientists live stream their dissection of colossal squid

Texas sinks freighter in Gulf to build artificial reef

Sharks in acidic waters avoid smell of food

Sea Shepherd to switch campaign from whales to toothfish

WATER WORLD
Past temperature in Greenland adjusted

Study resolves discrepancy in Greenland temperatures during end of last ice age

Russia dispatches naval force to reopen Arctic base

New study clears up Greenland climate puzzle

WATER WORLD
Canada federal police hunt for bee killer

Moroccan city outlaws olive trees

Drought hits Brazil coffee harvest

Diversified farming practices might preserve evolutionary diversity of wildlife

WATER WORLD
Five die as flash flood sweeps through French camping site

One killed in fresh Serbia, Croatia floods

6.7-magnitude quake strikes off Guam: USGS

Rushed evacuations as Philippine volcano spews lava

WATER WORLD
'Much to be done' for DR Congo to meet peace deal: NGOs

UN officially takes over peacekeeping operations in C. Africa

Mozambique rebel leader to hit the campaign trail

Obama to discuss Ebola response with top medical experts

WATER WORLD
World population may hit 11 billion by 2100: study

Non-dominant hand vital to the evolution of the thumb

Study ties groundwater to human evolution

Evolutionary tools improve prospects for sustainable development




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.