|
. | . |
|
by Brooks Hays Berkeley, Calif. (UPI) Jun 25, 2013
Music critics laughed away the party music of the 70s some time ago, but the groove persists at the bottom of the ocean, where the disco clam employs its own version of the strobe light and disco ball. The funky-looking disco clam -- formally Ctenoides ales -- is quite a sight, with its bright orange coloring and groovy tentacles. But what makes the creature truly unique is the electric-like light that lines the clam's lips. Previously scientists assumed the light was a form of bioluminescence -- a technique used by other animals, such as anglerfish or fireflies, whereby light energy is released via chemical reaction. But new research by Lindsey Dougherty, a graduate student at the University of California, Berkeley, has shown the disco clam to employ a fine line of silica micro-structures to reflect underwater light. Using an electron microscope and other precise imaging instruments, Dougherty was able to show exactly how the disco clam's lips keep the party going. On one side is a perfect line of microscopic balls of silica, like sequins. Silica is the primary element in glass and quartz. "They're almost ideal reflectors in blue-green water environments," said Dougherty, of the sequin-like silica balls. On the other side of the clam's lips is dark red. Because the wavelengths of red light rarely penetrate far below the surface, the other side of the clam's lips reflect little to no light -- whereas the silica side is perfectly designed to reflect the blue-green wavelengths. For Dougherty, who's on her way to a Ph.D. at Berkley, the research and subsequent study -- published this week in the Journal of the Royal Society Interface -- is a childhood dream realized. "I've dived with humpback whales and great white sharks," said Dougherty. "But when I saw the disco clam, I was enamored. I said then, 'I'm going to do a Ph.D. on the disco clam.'" Disco clams can be found throughout the South Pacific, from Australia to Indonesia, in water 10 to 160 feet deep. And more than just a mesmerizing sight, the clams' light-reflecting tricks could be adapted for the real world -- possibly as a technique for creating more efficient lighting in dim settings.
Related Links Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |