. Earth Science News .
WATER WORLD
Newly discovered phytoplankton groups appear to favor warmer oceans
by Staff Writers
Toronto, Canada (SPX) Jan 10, 2017


Researchers deploy a water sampler in the North Pacific Ocean where the first sequences of the new phytoplankton groups were detected. Image courtesy Adam Monier, University of Exeter. For a larger version of this image please go here.

An international research team has discovered two phytoplankton groups - unlike any known species - in climate-sensitive areas around the world. While they appear relatively rare compared to other phytoplankton, scientists say their prevalence in warm waters suggests they could be important in future ocean ecosystems.

The findings, published Jan. 9 in Current Biology, traced the phytoplankton genes to their potential ancient origins and matched them with sequences in around 200 contemporary samples. The new phytoplankton groups were increasingly abundant in warmer, low-nutrient surface waters at sites including the Sargasso Sea, Bay of Bengal and North Pacific Gyre.

"These new phytoplankton appear to thrive in the world's most desert-like waters where most other eukaryotic species decrease," said Alexandra Z. Worden, a senior fellow at the Canadian Institute for Advanced Research, who led the team from the Monterey Bay Aquarium Research Institute (USA) alongside collaborators from Oregon State University (USA), Woods Hole Oceanographic Institution (USA) and the National Institute of Oceanography (India).

Both phytoplankton groups were found in larger numbers in warmer, low-nutrient surface waters compared to numbers in cooler, higher-nutrient regions. This pattern surprised researchers because larger, eukaryotic phytoplankton often decline to vanishingly-low numbers under these conditions, which typically favour small cyanobacteria.

Ocean surface warming creates a layer of low-nutrient water separate from cooler, nutrient-rich water below. This process occurs annually in large regions of the open ocean where punctuated winter mixing allows for a short "bloom" of phytoplankton life that is followed by a summer season of warm, low-nutrient surface waters.

Most of the bloom species disappear during summer because they are not effective competitors for nutrients at low concentrations. Ocean surface warming is leading to an expansion of these low-nutrient environments in a process known as ocean desertification.

"As microbes in our oceans are forced to adapt to climate change, these are the types of organisms we really need to understand," Worden said.

Scientists have had difficulty measuring the impact of ocean warming on resident microbial groups due to a lack of consistent information on microbes, like the phytoplankton that carry out marine photosynthesis.

Worden's team established the Baselines Initiative to overcome this hurdle with more than 6,000 full-length RNA sequences and time-series sampling, where the same location is sampled repeatedly through the seasons and over the years. The ultimate goal of these oceanographic time-series is to capture current day information against which future changes in the ocean can be assessed.

Researchers first discovered one of the new phytoplankton groups in 2006 when they noticed one "weird" sequence out of millions. They thought the data from a tropical island off Costa Rica might have been a mistake until they saw identical sequences in the North Pacific and in coral reefs off Curacao. To verify their findings, they filtered the organisms' DNA from the seawater.

Next, they generated the full-length RNA gene sequence and compared it with other organisms to place it in an evolutionary tree. Finally, they mapped the organisms through samples from the BIOS Bermuda Atlantic Time-Series Study, the TARA Oceans Expedition and the Baselines Initiative, including the SeaFar Curacao project of the Integrated Microbial Biodiversity Program.

The first phytoplankton lineage appears to be an entirely new group of species of phytoplankton. Researchers believe its ancestor may be a single-celled protistan group that took a separate evolutionary path from the haptophyte algae, which arose between 1 billion and 637 million years ago. The second lineage appears to be closely related to haptophytes. However, it is a new group that doesn't belong to any known species or class.

"To understand future oceans one-off sampling won't work. If we had taken one snapshot of the ocean in spring we would have thought these phytoplankton didn't matter, but because we kept going back we realized they are important - it takes year-round sampling of the seasons to see that," Worden said.

Worden's lab will be returning to the Sargasso Sea and Curacao to better understand the ecology of the two phytoplankton groups. How these groups contribute to the food chain and carbon cycle is currently unknown. Worden believes one possibility is that they get their nutrients though a combination of photosynthesis and feeding on other cells.

"Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed" was published Jan. 9 in Current Biology by Chang Jae Choi, Charles Bachy, Gualtiero Spiro Jaeger, Camille Poirier, Lisa Sudek, V.V.S.S. Sarma, Amala Mahadevan, Stephen J. Giovannoni and Alexandra Z. Worden. This research was supported by the Office of Naval Research, Monterey Bay Aquarium Research Institute, the Gordon and Betty Moore Foundation and CIFAR.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Canadian Institute for Advanced Research
Water News - Science, Technology and Politics






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Are tiny grazers the new hope for Caribbean reefs
Panama City, Panama (SPX) Jan 10, 2017
Thirty years ago a mysterious disease wiped out long-spined black sea urchins across the Caribbean, leading to massive algal overgrowth that smothered already overfished coral reefs. Now, marine biologists at the Smithsonian Tropical Research Institute (STRI) report that smaller sea urchins and parrotfish may be taking the place of the large sea urchins, restoring the balance on degraded reefs. ... read more


WATER WORLD
Nepal sacks quake reconstruction chief

Six climbers die of cold climbing Guatemala volcano

Memory of lost Cyprus home haunts three generations

Debt traps threaten Nepal quake victims

WATER WORLD
Scientists make grocery bags out of shrimp shells

New active filaments mimic biology to transport nano-cargo

Manufacturing platform makes intricate biocompatible micromachines

Rice U probes ways to turn cement's weakness to strength

WATER WORLD
Changing rainfall patterns linked to water security in India

In Damascus, an old solution to water shortages: the hammam

DARPA's networks of the sea enter next stage

Landmark global scale study reveals potential future impact of ocean acidification

WATER WORLD
French satellite spots Antarctic caravan

Radar reveals meltwater's year-round life under Greenland ice

When the Arctic coast retreats, life in the shallow water areas drastically changes

Unlucky polar bears beset by toxins too

WATER WORLD
21 farmers granted bail in Myanmar army land-grabbing case

How we shop hurts endangered species

A trip to the land of endangered ancient olive trees

Chickens are smarter and more complex than given credit for

WATER WORLD
Rain slackens across Thailand's flood-hit south

Study: Recovery of Caribbean bats would take 8 million years

Floods sever overland routes to Thailand's south

Worst rain 'in 30 years' heaps misery on flood-hit Thai south

WATER WORLD
Draining huge African peatland a threat to climate

Five Malian soldiers killed by landmine

Reshuffle in I.Coast, security chiefs out after mutiny

I.Coast soldiers end mutiny after deal

WATER WORLD
A research framework for tracing human migration events after 'out of Africa' origins

Hair today, hungover tomorrow as young Japanese come of age

New study finds evolution of brain and tooth size were not linked in humans

Ancient DNA can both diminish and defend modern minds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.