![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Ann Arbor MI (SPX) Jun 11, 2021
An estimated 8 million tons of plastic trash enters the ocean each year, and most of it is battered by sun and waves into microplastics--tiny flecks that can ride currents hundreds or thousands of miles from their point of entry. The debris can harm sea life and marine ecosystems, and it's extremely difficult to track and clean up. Now, University of Michigan researchers have developed a new way to spot ocean microplastics across the globe and track them over time, providing a day-by-day timeline of where they enter the water, how they move and where they tend to collect. The approach relies on the Cyclone Global Navigation Satellite System, or CYGNSS, and can give a global view or zoom in on small areas for a high-resolution picture of microplastic releases from a single location. The technique is a major improvement over current tracking methods, which rely mainly on spotty reports from plankton trawlers that net microplastics along with their catch. "We're still early in the research process, but I hope this can be part of a fundamental change in how we track and manage microplastic pollution," said Chris Ruf, the Frederick Bartman Collegiate Professor of Climate and Space Science at U-M, principal investigator of CYGNSS and senior author on a newly published paper on the work. Their initial observations are revealing.
Season changes in the Great Pacific Garbage Patch Concentrations in the Southern Hemisphere peak during its summer months of January and February. Concentrations tend to be lower during the winter, likely due to a combination of stronger currents that break up microplastic plumes and increased vertical mixing that drives them further beneath the water's surface, researchers say. The data also showed several brief spikes in microplastic concentration at the mouth of the Yangtze River--long suspected to be a chief source. "It's one thing to suspect a source of microplastic pollution, but quite another to see it happening," Ruf said. "The microplastics data that has been available in the past has been so sparse, just brief snapshots that aren't repeatable." The researchers produced visualizations that show microplastic concentrations around the globe. Often the areas of accumulation are due to prevailing local water currents and convergence zones, with the Pacific patch being the most extreme example. "What makes the plumes from major river mouths noteworthy is that they are a source into the ocean, as opposed to places where the microplastics tend to accumulate," Ruf said. Ruf says the information could help organizations that clean up microplastics deploy ships and other resources more efficiently. The researchers are already in talks with a Dutch cleanup organization, The Ocean Cleanup, on working together to validate the team's initial findings. Single-point release data may also be useful to the United Nations agency UNESCO, which has sponsored a task force to find new ways to track the release of microplastics into the world's waters.
Hurricane-tracking satellites set their sights on plastic pollution The key to the process is ocean surface roughness, which CYGNSS already measures using radar. The measurements have mainly been used to calculate wind speed near the eyes of hurricanes, but Ruf wondered whether they might have other uses as well. "We'd been taking these radar measurements of surface roughness and using them to measure wind speed, and we knew that the presence of stuff in the water alters its responsiveness to the environment," Ruf said. "So I got the idea of doing the whole thing backward, using changes in responsiveness to predict the presence of stuff in the water." Using independent wind speed measurements from NOAA, the team looked for places where the ocean seemed less rough than it should be given the wind speed. They then matched those areas up with actual observations from plankton trawlers and ocean current models that predict the migration of microplastic. They found a high correlation between the smoother areas and those with more microplastic. Ruf's team believes the changes in ocean roughness may not be caused directly by the microplastics, but instead by surfactants--a family of oily or soapy compounds that lower the surface tension on a liquid's surface. Surfactants tend to accompany microplastics in the ocean, both because they're often released along with microplastics and because they travel and collect in similar ways once they're in the water.
Research Report: "Towards the Detection and Imaging of Ocean Microplastics with a Spaceborne Radar"
![]() ![]() Sri Lanka sued over ship disaster as possible oil spill looms Colombo (AFP) June 4, 2021 Environmentalists on Friday sued the Sri Lankan government and operators of a container ship loaded with chemicals and plastic that burned offshore for almost two weeks, as international experts prepared to deal with a possible oil spill. The private Centre for Environment Justice (CEJ) petitioned the Supreme Court alleging that local authorities should have been able to prevent what they called the "worst marine disaster" in Sri Lanka's history. The Singapore-registered MV X-Press Pearl has bee ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |