. Earth Science News .
WATER WORLD
One Man's Shoes Help NASA Explain Water Clarity
by Kasha Patel for GSFC News
Greenbelt MD (SPX) Jun 07, 2017


Bernie Fowler walks into Maryland's Patuxent River every June to see how deep he can travel and still see the tops of his shoes - an observation called "sneaker depth" that he has made for the past 29 years to help communicate how clear the river's water is. On June 11, 2017, Fowler, his family, friends and community will wade into the Patuxent River at Jefferson Patterson Park and make sneaker depth measurements for the 30th consecutive year. Credits: Jefferson Patterson Park and Museum

Wearing white sneakers, a cowboy hat and overalls, Bernie Fowler walks into Maryland's Patuxent River every June to see how deep he can go and still see the tops of his shoes. As a young man he could see his feet on the river bottom as he stood chest-deep to net blue crabs. Now in his nineties, he ventures into the river to assess the water clarity. Fowler has been collecting this data point for the past 29 years and counting, calling it "sneaker depth."

Scientists make precise measurements of water clarity from satellite data, but the calculations can be complex and hard to explain to people outside the discipline of oceanography. Now NASA is adopting Fowler's sneaker idea to communicate satellite measurements of water clarity, enabling the observations to be shared easily with interested the general public, local governments or anyone who is interested.

NASA scientists calling this algorithm "Fowler's Sneaker Depth" - the depth of water, in meters, at which a person can no longer see their white shoes. The study was published in the April 2017 edition of The Optical Society journal Optics Express.

Retired state senator Fowler has been using "sneaker depth" as a way to communicate local changes in water clarity to his neighbors and community. Water clarity is vital because sunlight must be able to reach deep beyond the surface to help underwater plants grow and maintain a healthy ecosystem.

Throughout the world, coastal waters can become murky due to excess of suspended mineral particles (e.g. eroded soil) or abnormally high abundances of phytoplankton (microscopic algae). While these effects occur naturally, they can be exacerbated by human activity in a watershed, such as land clearing, urban development, and the release of under-treated sewage. Poor water clarity can drastically affect human health, the food chain, and the fishing industry.

"When you talk to people about the chemistry of the river with scientific words like eutrophication, it goes in one ear and out the other," said Fowler.

"If you put on white sneakers and wade out in the river until you can't see your feet, that gives you pretty good understanding of what's going on." On June 11, 2017, Fowler, his family, friends and community will wade into the Patuxent River at Jefferson Patterson Park and make sneaker depth measurements for the 30th consecutive year.

Scientists sitting in an ocean ecology lab focus on accuracy, said Lachlan McKinna, an oceanographer at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and one of the study's authors. "But we sometimes need better ways to communicate with the general public."

Ben Crooke, a 17-year-old NASA summer intern, helped derive Fowler's Sneaker Depth as the first author of the paper. Crooke spent part of his summer analyzing Fowler's data and satellite imagery to understand local trends in water clarity.

Crooke and the team looked at data from the Aqua satellite's onboard instrument,the Moderate Resolution Imaging Spectroradiometer, or MODIS. The instrument measures different colors of light, or wavelengths, that are reflected from matter suspended in the water. They specifically looked at the amount of red light reflected of off floating particulates and sediments that make the water appear murky.

The team then developed a mathematical model to relate the amount of red light reflected, as measured by MODIS, with the sneaker depth, as physically measured by Fowler in the Patuxent River, for the years 2002 to 2016.

The resulting algorithm provides an easy way to visualize and communicate water clarity to the public. It also provides satellite-observed sneaker depth measurements for any day of the year not obstructed by a lot of clouds and for the entire Patuxent River estuary.

"We looked at how much variability there was in the sneaker depth on that one day of the year compared to every other day of the year," said Crooke, who graduated from Sandy Spring Friends School in Ashton-Sandy Spring, Maryland, and plans to study environmental science this fall at Skidmore College in New York.

Crooke and the team observed how the Patuxent's water quality varies with the season. The winter months had the largest Fowler's Sneaker Depth (i.e. best visibility) because river flow is minimal, meaning less incoming sediments, and environmental conditions are less favorable for phytoplankton growth. The late spring and early summer months tended to have the lowest sneaker depth (i.e. lowest visibility) because more phytoplankton and sediments are present.

The study also showed potential sources that influence the Patuxent River's water clarity. In recent years, improved watershed management has reduced the impacts from land use activities that can pollute the river, such as land clearing, sewage treatment, agriculture, and urban development. Yet summer phytoplankton blooms still continue in the lower Patuxent River estuary, suggesting that the nutrients that promote blooms are coming into the river from the Chesapeake Bay - an idea that previous studies have suggested.

Although the sneaker depth was primarily designed as a communication outreach tool for the public, the NASA team doesn't discount its use for science. The sneaker depth concept is actually similar to the Secchi disk depth measurement made monthly by the Chesapeake Bay Program.

In oceanography, scientists lower a plain, white disk one foot in diameter - called a Secchi disk - into the water on a rope and record the depth at which it disappears from sight. These measurements are useful for marine scientists who want to know what depth the light is reaching to understand how the phytoplankton and other underwater vegetation are growing.

"Fowler's Sneaker Depth will come in as a metric to look at long term water clarity trends for scientifically meaningful results and communicate those to the general public," said Ivona Cetinic, an oceanographer with the Universities Space Research Association at NASA Goddard and one of the study's authors. Cetinic and the team still need to make a few refinements though.

For one, they might set the maximum limit of the sneaker depth as Fowler's height - a way to retain the context of the number and honor Fowler's dedication and work on the Chesapeake Bay. Second, the team would welcome more data points from the community to help refine the algorithm.

"If you have a pair of old white sneakers and put them on your feet or a string and take some measurements, that could help us build a data set and fine tune the algorithm," said McKinna.

WATER WORLD
Understanding a river's 'thermal landscape' may be the key to saving it
Washington DC (SPX) Jun 05, 2017
River temperatures have long been an area of study, but until recently, the field has been hampered by technological constraints. Fine-scale measurements over large distances and long time periods have been difficult to collect, and research efforts have focused instead on average river temperatures, lethal extremes, and small-scale patterns. However, a suite of new technologies and method ... read more

Related Links
NASA Ocean Ecology Lab at Goddard
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Sri Lanka targets unauthorised builders after monsoon deaths

GMV to supply Copernicus services in support to EU external action

Sri Lanka hails record military deployment as toll hits 213

European Reassurance Initiative requests billion-dollar budget increase

WATER WORLD
Study proves viability of quantum satellite communications

Indian Space Agency to Work on Electric Propulsion for Large Satellites

Saudi deal for counterfire radars approved by U.S. State Department

Mitsubishi Electric Completes New Satellite Component Production Facility

WATER WORLD
One Man's Shoes Help NASA Explain Water Clarity

Off US coast, Tangier Island disappearing under water

Envoys wade in to help US waters despite Trump climate snub

Fish uses special lips to eat razor-sharp, venomous coral

WATER WORLD
How the Arctic Ocean became saline

Antarctic ice rift close to calving, after growing 17km in 6 days - latest data from ice shelf

Arctic peoples' climate pleas fell on deaf ears

Previously, on Arctic warming

WATER WORLD
Myanmar's edible bird nest industry comes home to roost

As temperatures rise, plants take up more carbon

Brexit risks disrupting EU agriculture market, experts warn

Scientists discover plant 'brain' controlling seed development

WATER WORLD
2017 hurricane season follows year of extremes

One dead, two missing as Taiwan battles floods

Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe

Deep magma reservoirs are key to volcanic 'super-eruptions'

WATER WORLD
African Union offers full support for UN climate deal

EU to give 50 million euros for African force in Sahel

China rejects Uganda ivory trafficking claims against diplomats

One dead after Gambian protesters clash with W. African troops

WATER WORLD
Tourists risk getting bit when they mistake monkey aggression for affection

Ancient grains offer insights into the birth and growth of the world's oldest cities

Fossil skeleton confirms earliest primates were tree dwellers

Springs were critical water sources for early humans in East Africa, Rutgers study finds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.