. | . |
Pacific Ocean, not ice sheet, shifted West Coast storms south by Staff Writers Boulder CO (SPX) Nov 15, 2021
About 20,000 years ago, large ice sheets loomed over North America, and researchers thought the ice, itself, pushed storms south, drenching the Southwest and leaving the Pacific Northwest dry. Now, a new CIRES-led study finds that ocean temperatures are the real culprit behind the dramatic shift in atmospheric circulation. The work, published in Earth and Planetary Science Letters suggests that West Coast precipitation patterns are tightly linked to changes in Pacific Ocean temperatures. "Although there is no chance that a 3-km-tall ice sheet will suddenly appear over North America, modern climate can produce similar changes in North Pacific ocean temperatures that could temporarily swap the climates of the Southwest and the Pacific Northwest," said Dillon Amaya, a former CIRES Visiting Fellow and lead author on the paper. Amaya, now a NOAA research scientist with the Physical Sciences Laboratory, and his colleagues used a climate model to evaluate the impact of Northern Hemisphere ice sheets on West Coast atmospheric dynamics during the Last Glacial Maximum, when today's arid Southwest was moist and the wet Pacific Northwest was dry. This major shift in storm tracks is supported by geologic evidence and previous modeling work, but the underlying cause remained less clear. Researchers long hypothesized ice sheets acted as a physical barrier during the last ice age, forcing the North Pacific jet stream and wintertime storms south. But more recently, scientists began looking closer at another characteristic of the ice. "There's also the thermodynamic effect of having a really bright ice sheet that reflects a lot of sunlight," Amaya explained. "That creates cooling that also adjusts atmospheric circulation." To better understand the differences between the two effects, the team used a climate model that also simulated the response of the ocean to the ice sheets and its interactions with the atmosphere. Surprisingly, their model results suggest that ice sheets play a key, but behind-the-scenes role. In their climate model experiments, when they deliberately oversimplified the ways the ocean and atmosphere interact, ice sheets did appear to physically force the jet stream south. But when they allowed their model to account for air-sea interactions more realistically, the ice sheet's brightness triggered a change in North Pacific Ocean temperature patterns. The change altered the atmosphere's circulation and shifted west coast precipitation south. The work shows that ocean temperatures, not ice sheets themselves, are directly responsible for the reorganization of North Pacific atmospheric circulation and West Coast precipitation patterns during the Last Glacial Maximum. The distinction is important, Amaya said, because the pattern of ocean temperatures is not unique to the Last Glacial Maximum, nor does it require the presence of an ice sheet to occur. "This study highlights the need for a holistic view of the climate system, especially when modeling its past and future behavior," said coauthor and CIRES Fellow Kris Karnauskas. "Without accounting for the interaction between the atmosphere and ocean, you can end up with the right answer for the wrong reason, which is of course risky when you try to extrapolate that information to future concerns like freshwater availability." "It is distinctly plausible that we could get an ocean temperature pattern in the North Pacific that looks very much like what we saw during the Last Glacial Maximum," Amaya said. "This could lead to dramatic changes in West Coast hydroclimate over a relatively short period of time, like decades.
Research Report: "Air-sea coupling shapes North American hydroclimate response to ice sheets during the Last Glacial Maximum"
'No Drama Sharma': UK's low-key COP chief Glasgow (AFP) Nov 12, 2021 Alok Sharma was hardly a household name in Britain, let alone the rest of the world, when appointed to lead the UN climate talks now reaching a climax in Glasgow. But with the planet's future at stake, the COP26 president has had to emerge from the shadows to stand in a blindingly bright spotlight over the past fortnight, trying to reconcile seemingly irreconcilable demands. Reflecting on his own role, the self-effacing former UK business secretary said on Thursday: "People sometimes describe me ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |