Subscribe free to our newsletters via your
. Earth Science News .




FLORA AND FAUNA
Picking apart photosynthesis
by Staff Writers
Pasadena CA (SPX) Apr 03, 2013


This illustration depicts a metal cluster prepared by the Agapie group at Caltech on a background of photosystem II, the protein complex that performs photosynthesis in leaves. Credit: Emily Tsui/Caltech.

Chemists at the California Institute of Technology (Caltech) and the Lawrence Berkeley National Laboratory believe they can now explain one of the remaining mysteries of photosynthesis, the chemical process by which plants convert sunlight into usable energy and generate the oxygen that we breathe. The finding suggests a new way of approaching the design of catalysts that drive the water-splitting reactions of artificial photosynthesis.

"If we want to make systems that can do artificial photosynthesis, it's important that we understand how the system found in nature functions," says Theodor Agapie, an assistant professor of chemistry at Caltech and principal investigator on a paper in the journal Nature Chemistry that describes the new results.

One of the key pieces of biological machinery that enables photosynthesis is a conglomeration of proteins and pigments known as photosystem II. Within that system lies a small cluster of atoms, called the oxygen-evolving complex, where water molecules are split and molecular oxygen is made. Although this oxygen-producing process has been studied extensively, the role that various parts of the cluster play has remained unclear.

The oxygen-evolving complex performs a reaction that requires the transfer of electrons, making it an example of what is known as a redox, or oxidation-reduction, reaction. The cluster can be described as a "mixed-metal cluster" because in addition to oxygen, it includes two types of metals-one that is redox active, or capable of participating in the transfer of electrons (in this case, manganese), and one that is redox inactive (calcium).

"Since calcium is redox inactive, people have long wondered what role it might play in this cluster," Agapie says.

It has been difficult to solve that mystery in large part because the oxygen-evolving complex is just a cog in the much larger machine that is photosystem II; it is hard to study the smaller piece because there is so much going on with the whole.

To get around this, Agapie's graduate student Emily Tsui prepared a series of compounds that are structurally related to the oxygen-evolving complex.

She built upon an organic scaffold in a stepwise fashion, first adding three manganese centers and then attaching a fourth metal. By varying that fourth metal to be calcium and then different redox-inactive metals, such as strontium, sodium, yttrium, and zinc, Tsui was able to compare the effects of the metals on the chemical properties of the compound.

"When making mixed-metal clusters, researchers usually mix simple chemical precursors and hope the metals will self-assemble in desired structures," Tsui says. "That makes it hard to control the product. By preparing these clusters in a much more methodical way, we've been able to get just the right structures."

It turns out that the redox-inactive metals affect the way electrons are transferred in such systems. To make molecular oxygen, the manganese atoms must activate the oxygen atoms connected to the metals in the complex. In order to do that, the manganese atoms must first transfer away several electrons. Redox-inactive metals that tug more strongly on the electrons of the oxygen atoms make it more difficult for manganese to do this. But calcium does not draw electrons strongly toward itself. Therefore, it allows the manganese atoms to transfer away electrons and activate the oxygen atoms that go on to make molecular oxygen.

A number of the catalysts that are currently being developed to drive artificial photosynthesis are mixed-metal oxide catalysts. It has again been unclear what role the redox-inactive metals in these mixed catalysts play. The new findings suggest that the redox-inactive metals affect the way the electrons are transferred. "If you pick the right redox-inactive metal, you can tune the reduction potential to bring the reaction to the range where it is favorable," Agapie says. "That means we now have a more rational way of thinking about how to design these sorts of catalysts because we know how much the redox-inactive metal affects the redox chemistry."

The paper in Nature Chemistry is titled "Redox-inactive metals modulate the reduction potential in heterometallic manganese-oxido clusters." Along with Agapie and Tsui, Rosalie Tran and Junko Yano of the Lawrence Berkeley National Laboratory are also coauthors. The work was supported by the Searle Scholars Program, an NSF CAREER award, and the NSF Graduate Research Fellowship Program. X-ray spectroscopy work was supported by the NIH and the DOE Office of Basic Energy Sciences. Synchrotron facilities were provided by the Stanford Synchrotron Radiation Lightsource, operated by the DOE Office of Biological and Environmental Research.

.


Related Links
California Institute of Technology
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
The splendid Skadar Lake (Montenegro and Albania), surprises with new species of snails
London, UK (SPX) Apr 03, 2013
The Gastropoda, more commonly known as snails and slugs, are a large group of animals within the phylum Mollusca. Gastrop?ds species are extremely diverse in forms and sizes, ranging from microscopic to large. About 50 species of snails are currently considered to inhabit Skadar Lake, the largest on the Balkan Peninsula. The Bojana River connects the lake with the Adriatic Sea, and the Dri ... read more


FLORA AND FAUNA
Eyes in sky help when catastrophe strikes

More Tibet landslide bodies recovered: media

Total of 54 Tibet landslide bodies recovered: state media

Shellfish gone near damaged nuke plant

FLORA AND FAUNA
CO2 could produce valuable chemical cheaply

Catalyst in a teacup: New approach to chemical reduction

Lasers could yield particle research tool

Paint-on plastic electronics: Aligning polymers for high performance

FLORA AND FAUNA
Researchers unveil large robotic jellyfish that one day could patrol oceans

Desert nomads marvel at water purifying device

Giant pockmarks found on Pacific seafloor

Rising up to prepare for sea level rise

FLORA AND FAUNA
Recommendations for Streamlining Scientific Logistics in Antarctica

Arctic 'greening' seen through global warming

China plans more Antarctica research sites

Summer melt season is getting longer on the Antarctic Peninsula

FLORA AND FAUNA
Singapore gardens aim for UNESCO heritage status

Munching sheep replace lawn mowers in Paris

Suspected killers of ecologists on trial in Brazil

Study looks at why chickens overeat

FLORA AND FAUNA
Iceland volcanoes said growing threat

Record floods in Argentina kill 54: officials

US thanks Japan for help with tsunami debris

Strong quake kills one, injures 86 in Taiwan

FLORA AND FAUNA
Uncertainty over S.African CAR deployment

Nigerian Easter day military raid leaves 15 dead

Obama to meet African leaders Thursday

S.Africa opposition wants troops out of Central Africa

FLORA AND FAUNA
Scientists identify brain's 'molecular memory switch'

Researchers successfully map fountain of youth

First evidence of Neanderthal/human mix

Urban vegetation deters crime in Philadelphia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement