. | . |
Predicting how bad the bends will be by Staff Writers Durham NC (SPX) Mar 17, 2017
Researchers have created a new model for predicting decompression sickness after deep-sea dives that not only estimates the risk, but how severe the symptoms are likely to be. The US Navy Diving Manual may incorporate the model into its next update, as will commercial products intended to help recreational divers plan their ascents to avoid "the bends." The results appear online in the journal PLOS ONE. "The current guidelines only give you a probability as to whether or not decompression sickness is likely to happen after a given dive," said Laurens Howle, professor of mechanical engineering and materials science at Duke, who has been working on these models with the Navy for a decade. "This is the first time we've been able to also address the likely severity of the potential sickness, helping divers determine acceptable risk." All risks have two components - the likelihood of something bad happening and just how bad that something is likely to be. Having a model that accurately provides both aspects will allow divers to better plan safe depths and ascents to help their bodies adjust - preventing painful and potentially fatal results. Decompression sickness occurs when dissolved gasses such as nitrogen and helium come out of solution inside the body, forming dangerous, painful bubbles. This happens when divers ascend too quickly, and the pressure of gasses within various tissues exceeds that of the surrounding pressure. "Getting the bends is not fun," said Greg Murphy, a doctoral candidate in Howle's laboratory, who has experienced the full severity spectrum of decompression sickness firsthand. "While I was diving in a salvage zone for the Navy, my anchor broke and I shot to the surface. On the ride to the hospital, I could barely breathe even with pure oxygen." No divers had to take such risks to gather data for the new model, as the Navy has a dataset of more than 3,000 simulated dives conducted in a carefully controlled hyperbaric chamber. Using that data, along with models of how gasses are absorbed and released by human tissue, Howle crunched the numbers to sort dives into six levels of potential severity. Howle then divided the categories into a mild manifestation grouping (pain only) and a serious manifestation grouping (likely neurological or cardiopulmonary symptoms). He then assigned the same levels of acceptable risk currently used by the Navy to each. With a slight tweak to the definition of mild decompression sickness, the resulting model and boundaries of acceptable risk closely matched the practices already in place in the Navy, making it a useful predictive tool moving forward. "Now that we have this model, we can use it to quickly and accurately predict the likelihood and severity of decompression sickness simultaneously to make decisions," said Howle. "We're also working to optimize the algorithm so that it could operate on a diver-worn computer so adjustments and new predictions could be made on the fly." Research paper: "The Probability and Severity of Decompression Sickness," Laurens E. Howle, Paul W. Weber, Ethan Hada, Richard D. Vann, Petar J. Denoble. PLOS ONE, March, 15, 2017. DOI: 10.1371/journal.pone.0172665
Hobart, Australia (UPI) Mar 13, 2017 Boaty McBoatface, which received its unusual moniker in an online poll last year, is about to embark on its maiden voyage to conduct scientific research. The British National Environment Research Council in March 2016 invited voters in an online poll to name the $290 million scientific polar research ship last year. The RRS Boaty McBoatface was the top choice with 27,000 votes, 3,000 mo ... read more Related Links Duke University Water News - Science, Technology and Politics
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |