Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
'Red tide' species is deadlier than first thought
by Staff Writers
Storrs CT (SPX) Jul 26, 2012


File image.

A University of Connecticut researcher and his team have discovered that a species of tiny aquatic organism prominent in harmful algal blooms sometimes called "red tide" is even deadlier than first thought, with potential consequences for entire marine food chains. Professor Hans Dam and his research group in the school's Department of Marine Sciences have discovered that the plankton species Alexandrium tamarense contains not one but two different types of toxins, one that's deadly to large organisms and one that's deadly to small predators.

"If it's killing multicellular animals with one toxin and small protists with another, it could be the killer of the ocean world," he says.

Dam speculates that this ability to harm both large and small oceanic predators could lead to disruptions in the marine food web during large Alexandrium blooms, like the red tide that occurred along the Northeast coast in 2005, severely affecting the Cape Cod area.

"These small predators that are being affected by the reactive oxygen species are the things that typically eat large amounts of the algae and keep them from growing like crazy," says Dam. "This brings up a whole new line of inquiry for us: What will actually control these algae in the future?"

In small numbers, Alexandrium are virtually harmless to humans, says Dam. But when they're eaten by other clams, mussels or other microorganisms - which are then eaten by small crustaceans, which are in turn eaten by larger crustaceans or fish - the toxins can build up in large amounts. So in some parts of the world, eating contaminated shellfish, such as lobsters, clams and fish, has led to illness or death.

However, says Dam, that toxin only affects animals that have central nervous systems.

"This toxin blocks sodium channels in anything that has a well-developed nervous system," he says. "But most of the organisms in the ocean are not those kinds of organisms. They're single-celled, similar to the algae themselves, and they don't have a well-developed nervous system."

Scientists had begun to notice that even though Alexandrium's toxin isn't supposed to affect single-celled animals, when the algae was in the vicinity of some of its one-celled predators, some of those predators got sick and died. Dam's post-doctoral researcher Hayley Flores showed in laboratory experiments that in fact the alga produces a different toxin, called a reactive oxygen species, that kills their predators by popping their cell membrane.

"If you only have one cell, lysing your cell membrane is all it takes to kill you," says Dam. "This new mechanism of toxicity, combined with the other, is pretty evil."

Dam notes that although harmful algal blooms have been linked to human activities, such as pollution runoff from rivers, there are many different factors that could affect the blooms, and scientists still aren't sure exactly how they begin. He speculates that the algae may have become more toxic over time, which has led to their proliferation.

His group will next try to understand how the alga produces the reactive oxygen species and whether it also affects animals multicellular animals. He's also working with researchers at the University of Los Lagos in Chile to understand how Alexandrium may affect important commercial species such as salmon and king crab "The amazing thing is, when you look at these algae under a microscope, they're so beautiful - but they're so deadly," says Dam. "We call them the beautiful assassins."

.


Related Links
University of Connecticut
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Scientists confirm existence of vitamin 'deserts' in the ocean
Los Angeles CA (SPX) Jul 26, 2012
Using a newly developed analytical technique, a team led by scientists at USC was the first to identify long-hypothesized vitamin B deficient zones in the ocean. "This is another twist to what limits life in the ocean," said Sergio Sanudo-Wilhelmy, professor of biological and earth sciences at the USC Dornsife College of Letters, Arts and Sciences and lead author on a paper about the vitamin-dep ... read more


WATER WORLD
Disaster-hit Japan could use microfinance: Yunus

In Haiti, anger over slum eviction plans

Japan probes claim workers' radiation levels faked

Japan sets compensation for Fukushima evacuees

WATER WORLD
Google unveils ultrafast wired home project

Stone Age tools help to streamline modern manufacturing

Headwall's Hyperspectral Sensors Set to Lift Off with NT Space

Cassidian announces passive radar system

WATER WORLD
'Red tide' species is deadlier than first thought

Scientists confirm existence of vitamin 'deserts' in the ocean

Egyptian navy seizes five Italian trawlers: reports

Ancient Alteration of Seawater Chemistry Linked With Past Climate Change

WATER WORLD
Scientists find Grand Canyon-sized rift under Antarctic ice

Tropical plankton invade Arctic waters

Satellites see Unprecedented Greenland Ice Sheet Melt

Polar bear evolution tracked climate change

WATER WORLD
Mexico to vaccinate 10 million birds in flu outbreak

Super Bags to thwart rice wastage now available to Filipino farmers

Evolution highly predictable for insects eating toxic plants

Lighting up the plant hormone 'command system'

WATER WORLD
Croscat Volcano may have been the last volcanic eruption in Spain 13,000 years ago

How pre-eruption collisions affect what exits a volcano

Beijing floods caused 'significant losses': official

6.4-magnitude quake hits Indonesia's Sumatra: USGS

WATER WORLD
Panetta to visit North Africa, Middle East

Brother of exiled Rwandan ex-army chief gets 9 years' jail

Mozambique told to tackle crime

New sapphire find sends panners into Madagascar lemur park

WATER WORLD
Japan women lose longest-lived title: government

Kissenger: virtual lips for long-distance lovers

Oregon's Paisley Caves as old as Clovis sites - but not Clovis

Unique Neandertal arm morphology due to scraping, not spearing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement