. Earth Science News .
Research Highlights How Bacteria Produce Energy

Researchers from the Universidad Nacional Autonoma de Mexico announce that they have genetically engineered the bacterium Bacillus subtilis (pictured) to directly ferment glucose sugar to ethanol with a high (86 percent) yield
by Staff Writers
Orlando FL (SPX) May 24, 2006
The world's smallest life forms could be the answer to one of today's biggest problems: providing sustainable, renewable energy for the future. Using a variety of natural food sources, bacteria can be used to create electricity, produce alternative fuels like ethanol and even boost the output of existing oil wells, according to research being presented this week at the 106th General Meeting of the (ASM) American Society for Microbiology in Orlando, Florida.

"Microbial fuel cells show promise for conversion of organic wastes and renewable biomass to electricity, but further optimization is required for most applications," says Derek Lovley of the University of Massachusetts in Amherst. Earlier this month, Lovley announced at a meeting that he and his colleagues were able to achieve a 10-fold increase in electrical output by allowing the bacteria in microbial fuel cells to grow on biofilms on the electrodes of a fuel cell.

This week, Gemma Reguera, a researcher in Lovley's lab will present data identifying for the first time how these bacteria are able to transfer electrons through the biofilms to the electrodes.

"Cells at a distance from the anode remained viable with no decrease in the efficiency of current production as the thickness of the biofilm increased. These results are surprising because Geobacter bacteria do not produce soluble molecules or 'shuttles' that could diffuse through the biofilm and transfer electrons from cells onto the anode," says Reguera.

She and her colleagues discovered that the bacteria produce conductive protein filaments, or pili 'nanowires,' to transfer electrons. The finding that pili can extend the distance over which electrons can be transferred suggests additional avenues for genetically engineering the bacteria to further enhance power production.

Researchers from the Universidad Nacional Autonoma de Mexico announce that they have genetically engineered the bacterium Bacillus subtilis to directly ferment glucose sugar to ethanol with a high (86 percent) yield. This is the first step in a quest to develop bacteria that can breakdown and ferment cellulose biomass directly to ethanol.

"Currently ethanol is produced primarily from sugarcane or cornstarch, but much more biomass in the whole plant, including stems and leaves, can be converted to ethanol using clean technology," says Aida-Romero Garcia, one of the researchers on the study. The next step is to engineer the bacteria to produce the enzymes, known as cellulases, to break the stems and leaves down into the simple carbohydrates for fermentation.

Bacteria can not only produce alternative fuels, but could also aid in oil production by boosting output of existing wells. Michael McInerney and his colleagues at the University of Oklahoma will present research demonstrating the technical feasibility of using detergent-producing microorganisms to recover entrapped oil from oil reservoirs.

"Our approach is to use microorganisms that make detergent-like molecules (biosurfactants) to clean oil off of rock surfaces and mobilize oil stuck in small cavities. However, up till now, it is not clear whether microorganisms injected into an oil reservoir will be active and whether they will make enough biosurfactant to mobilize entrapped oil," says McInerney.

He and his colleagues were able to inoculate an oil reservoir with specific strains of bacteria and have these bacteria make biosurfactants in amounts needed for substantial oil recovery.

"We now know that the microorganisms will work as intended in the oil reservoir. The next important question is whether our approach will recover entrapped oil economically. We saw an increase in oil production after our test, but we need to measure oil production more precisely to be certain," says McInerney.

Related Links
American Society for Microbiology

Team Revamps Energy System For Fuel-Efficiency
Cambridge MA (SPX) May 24, 2006
MIT researchers are trying to unleash the promise of an old idea by converting light into electricity more efficiently than ever before. The research is applying new materials, new technologies and new ideas to radically improve an old concept -- thermophotovoltaic (TPV) conversion of light into electricity.







  • CapRock Expands Disaster Satellite Services in Preparation For Hurricane Season
  • New Network Needed to Solve First Responder Communications Crisis
  • I think I'll take the stairs
  • Dutch Soldiers Move Into Afghanistan Under Apache Protection

  • Tropical Forests Leak Nitrogen Back Into Atmosphere
  • Greenhouse Gas/Temp Feedback Mechanism May Raise Warming Further
  • Canada wants Kyoto climate-change deal scrapped: report
  • Al Gore issues global warming wake-up call at Cannes

  • Akari Delivers Its First Images
  • Province Of Ontario Secures Quickbird Imagery Library
  • Allied Defense Wins New Tracking Antenna Orders
  • DLR And EADS To Collaborate On New Earthsat Mission

  • Research Highlights How Bacteria Produce Energy
  • Team Revamps Energy System For Fuel-Efficiency
  • Here Comes The Sun With New Solutions For Worlds Energy Woes
  • Undersea Channels Could Aid Oil Recovery

  • Finding Cures For The Disease Of Neglect
  • More than 210,000 South Africans on antiretrovirals: spokesman
  • Hundred cases a day of HIV infections in Russia: officials
  • Sanyo says filtering system effective against bird flu viruses

  • Satellite Tracking Reveals Migratory Mysteries Of Atlantic Loggerhead Turtles
  • How Ancient Whales Lost Their Legs, Got Sleek And Conquered The Oceans
  • Brazil Creates Buffer Zone Around Coral Reefs Off Atlantic Coast
  • New Reefs Explored For Pharmaceutical Potential, Ecological Impacts

  • Finland hopes to clean up Russian shipping in Baltic
  • Test For Dioxin Sensitivity In Wildlife Could Result From New Study
  • Exxon Valdez Oil Found In Tidal Feeding Grounds Of Ducks, Sea Otters
  • New "Toxic" Ship Bound For India

  • OHSU Primate Center Research Suggests Multiple 'Body Clocks'
  • Five Surprising Facts About Starvation
  • Hobbit Claims Shrunken
  • Europe's Migrant Crisis

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement