Earth Science News
EARLY EARTH
Research Shows Impact of 'Super-Earth' on Solar System
illustration only
Research Shows Impact of 'Super-Earth' on Solar System
bv Madeline Taylor for FIT News
Melbourne FL (SPX) Jan 15, 2025

Emily Simpson '24 has loved space since she was a 10-year-old kid celebrating her birthday at a planetarium. Now a recent Florida Tech graduate, she leaves with not only a dual degree in planetary science and astronomy and astrophysics but with published research, too. She mapped our solar system's "alternate fate" had it housed an extra planet between Mars and Jupiter instead of the existing asteroid belt.

Simpson's paper, "How might a planet between Mars and Jupiter influence the inner solar system? effects on orbital motion, obliquity, and eccentricity," was published in Icarus, a journal devoted to the publication of research around solar system studies. It was co-authored by her advisor, assistant professor of planetary science Howard Chen. They developed a 3D model that simulates how the solar system's orbital architecture may have evolved differently with the formation of a planet that is at least twice the size of Earth's mass - a super-Earth - instead of an asteroid belt.

"What if the asteroid belt, instead of forming the ring of smaller asteroids that it is today, what if it had instead formed a planet between Mars and Jupiter instead," Simpson asked. "How would that affect the inner planets, so Venus, Earth, and Mars, specifically?"

According to Chen, since the discovery of the first exoplanet in 1992, researchers have wondered how common solar systems - a group of planets orbiting a star - are, as well as how many of those planet systems are like our solar system. He said our solar system is rare; most planetary systems are more compact than ours, and many systems contain super-Earth planets.

Understanding how the habitability of our solar system's inner planets - Mercury, Venus, Earth and Mars - would change had there been a super-Earth opposite Mars can help guide astrobiologists' research of which planetary systems may be able to support life, the researchers said.

In her study, Simpson proposed five different potential planet masses ranging from 1% of the Earth's mass to 10 Earth masses. With each mass, she modeled two million years of orbit to find what kind of architectural impact each mass would have on our solar system. Specifically, she tracked changes to the other planets' obliquities - how much a planet tilts on its axis - and eccentricities - how much a planet's orbit deviates from a true circle.

Obliquity influences the intensity of temperature in each season: greater tilt creates more intense temperatures, while less tilt creates milder temperatures. Eccentricity determines the length of each season: lower eccentricity evens out the four seasons into similar lengths, while higher eccentricity creates an imbalance of the number of days in each season.

Simpson and Chen found that the lower-massed simulations made less of an impact on the inner planets' habitability. They found some changes in obliquity - Mars "wobbled" a bit more, Simpson said - but overall, the inner solar system remained habitable.

"If it's one or two Earth masses, which is still a pretty big planet, our inner solar system would still remain quite nice. We might experience slightly hotter summers or colder winters because there's this sway in obliquity, but we could still live our lives," Chen explained.

With higher massed planets, however, there were more detrimental changes to the system's structure. When simulating a planet ten times the size of Earth's mass, Simpson found that the inner planets experienced high obliquity and high eccentricity, leading to dangerous temperature differences between seasons. The mass may have even pushed Earth's orbit closer to Venus and beyond the habitable zone it exists in currently.

While hypothetical, these observations can help astrobiologists predict how and where life may have a shot of surviving in a planetary system. This research also provides an idea of how big a super-Earth can get before stifling the possibility of life around it.

"If we discover a solar system-like system, but with a slightly different history - where instead of the natural belt, there is a planet - could that planet system's inner regions still be hospitable? The answer is it depends on how big the planet is," Simpson said. "If it's too massive, that would probably spell doom for the planets within its orbit."

Research Report:How might a planet between Mars and Jupiter influence the inner solar system? effects on orbital motion, obliquity, and eccentricity

Related Links
Florida Institute of Technology
Explore The Early Earth at TerraDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EARLY EARTH
Dinosaurs emerged in the northern hemisphere millions of years earlier
Los Angeles CA (SPX) Jan 10, 2025
New research from the University of Wisconsin-Madison challenges long-standing beliefs about dinosaur origins, suggesting that these ancient reptiles roamed the northern hemisphere millions of years earlier than previously thought. The discovery of Ahvaytum bahndooiveche, a newly identified dinosaur species, has provided critical evidence for this revised timeline. Ahvaytum bahndooiveche's fossils were unearthed in Wyoming, part of the ancient supercontinent Laurasia. Radiometric dating indicates ... read more

EARLY EARTH
Director of apocalyptic Sundance film lost home in LA fires

Indonesia landslide death toll rises to 22 as search paused

Indonesia rescuers search for survivors as landslide kills 19

Trump orders 1,500 extra troops to US-Mexico border

EARLY EARTH
Flexible electronics integrated with paper-thin structure for use in space

Musk bashes Trump-backed AI mega project

Turn on the lights DAVD display helps navy divers navigate undersea conditions

Musk bashes Trump-backed AI mega project

EARLY EARTH
New technology reduces costs and chemicals in desalination

Cycle of coral bleaching on the Great Barrier Reef reaches catastrophic levels

Drinking water in many French cities contaminated: study

Russians take Epiphany dip in waters hit by oil spill

EARLY EARTH
How is Antarctica melting

Save the world's glaciers to save the planet: UN

Historic drilling campaign reaches more than 1.2-million-year-old ice

2024 was hottest year on record for Norway's Arctic

EARLY EARTH
War and climate crisis reshape global fertiliser industry

We can produce fertilizer more efficiently by harnessing Earth's subsurface forces

The global forces sending coffee prices skyward

Bamboo farm gets chopping for US zoo's hungry new pandas

EARLY EARTH
Spain govt to cover full cost of repairing flood-damaged buildings

Indonesia's Mount Ibu erupts more than 1,000 times this month

Japan marks 30th anniversary of deadly Kobe quake

One killed as stairs collapse in flood-damaged Spanish building

EARLY EARTH
Gabon adopts new electoral code in key step towards polls

Italy defends expulsion of wanted Libya police chief

ICC confirms wanted arrest of freed Libya police chief

Fears of fighters loyal to IS linger near DR Congo-Uganda border

EARLY EARTH
Three million years ago our ancestors relied on plant-based diets

Human ancestor endured arid extremes longer than once believed

How to Design Humane Autonomous Systems

China says population fell for third year in a row in 2024

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.