. Earth Science News .
Researchers Find Evidence Of Very Recent Human Adaptation

In this study, the researchers identified 101 regions of the human genome with strong evidence of very recent selection. These regions include genes that control proteins that help muscle cells attach to surrounding cells (mutations of this gene lead to muscular dystrophy), receptors that relate to hearing, genes involved in nervous system function and development, immune system genes and heat shock genes.
by Staff Writers
Ithaca NY (SPX) Jul 16, 2007
A Cornell study of genome sequences in African-Americans, European-Americans and Chinese suggests that natural selection has caused as much as 10 percent of the human genome to change in some populations in the last 15,000 to 100,000 years, when people began migrating from Africa.

The study, published in the June 1 issue of PLoS (Public Library of Science) Genetics, looked for areas where most members of a population showed the same genetic changes. For example, the researchers found evidence of recent selection on skin pigmentation genes, providing the genetic data to support theories proposed by anthropologists for decades that as anatomically modern humans migrated out of Africa and experienced different climates and sunlight levels, their skin colors adapted to the new environments.

However, the study found no evidence of differences in genes that control brain development among the various geographical groups, as some researchers have proposed in the past.

"We undertook a very careful study of genetic differences within and among major human groups, and aimed to explain why certain parts of the genome differed," said Scott Williamson, the study's lead author and a Cornell assistant professor of biological statistics and computational biology. "We aimed to eliminate as many possible confounding variables as possible, and when all is said and done, we find that as much as 10 percent of the genome may have been affected by one of these bouts of recent selection."

Previous studies at Cornell and elsewhere have searched for signs of selection -- the divergence of genes from a common ancestor millions of years ago -- by comparing an individual human to a chimpanzee or mouse, for example, or by comparing genetic variation in protein coding genes among humans to differences between humans and a chimpanzee. But this study scanned genome sequences that compared many humans to each other throughout the entire genome, with new strict statistical methods that correct for many potential biases that creep into this kind of analysis.

In the latest study, the researchers identified 101 regions of the human genome with strong evidence of very recent selection. These regions include genes that control proteins that help muscle cells attach to surrounding cells (mutations of this gene lead to muscular dystrophy), receptors that relate to hearing, genes involved in nervous system function and development, immune system genes and heat shock genes.

The gene scan method also detected selection in a gene involved in digestion of lactose, an enzyme found in milk. Prior to animal domestication, humans lost the ability to digest milk after infancy. But, as humans migrated and domesticated animals, Europeans and other populations developed a gene for tolerating lactose (and milk) throughout their lives. This finding has been well established in previous research, so arriving at similar results provided an internal validation for the accuracy of the new method.

Overall, close to 10 percent of the Chinese and European-American genomes and only 1 percent of the African-American genome were linked to areas with evidence of recent selection. Since Africans have the greatest genetic diversity and the statistical method searched for areas where the majority of members within a population group have the same genetic changes, signs of evolution were much easier to detect in the less diverse European-American and Chinese genomes.

"It is important to emphasize that the research does not state that one group is more evolved or better adapted than another," said co-author Carlos Bustamante, a Cornell assistant professor of biological statistics and computational biology. "Rather as humans have populated the world, there has been strong selective pressure at the genetic level for fortuitous mutations that allow digestion of a new food source or tolerate infection by a pathogen that the population may not have faced in a previous environment."

Rasmus Nielsen, an adjunct professor of biological statistics and computational biology at Cornell and now a professor at the University of Copenhagen, Denmark, is the paper's senior author.

Community
Email This Article
Comment On This Article

Related Links
Cornell University
All About Human Beings and How We Got To Be Here



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Neutral Evolution Has Helped Shape Our Genome
Baltimore MD (SPX) Jul 16, 2007
Johns Hopkins researchers have added to the growing mound of evidence that many of the genetic bits and pieces that drive evolutionary changes do not confer any advantages or disadvantages to humans or other animals. "For a long time, the basic belief of evolution was that all random genetic changes that manage to stick around have some selective advantage," says Nicholas Katsanis, Ph.D., Associate Professor at Hopkins' Institute of Genetic Medicine. "But our work adds to the case that frequently, we are what we are largely due to random changes that are completely neutral."







  • Let Them Raise Catfish Says Indonesian Minister As Future For Mud Volcano Victims
  • Impact Of Climate Change Equal To Nuclear War
  • Floods And Heatwaves Offer Warning Of Impact Of Climate Change
  • MIT Tool Determines Landslide Risk In Tropics

  • New Study Suggests Climate Change Could Be The Root Of Armed Conflicts
  • Western US States Swelter Under Record Heatwave
  • Australian Drought Turns To Flood As California Dries Out
  • The Challenge Of Desertification

  • GOP House Science Committee To Evaluate NASA Earth Science Budget
  • Subcommittee Continues Look At Status of NASA Earth Science Programs
  • QuikSCAT Marks Eight Years On-Orbit Watching Planet Earth
  • Ukraine To Launch Earth Observation Satellite In 2008

  • Eco-Architecture Takes Root In Thailand
  • ENDESA Starts Up The Poggi Alti Wind Farm In Italy
  • Invenergy Starts Commercial Operation Of 130MW Camp Springs Wind Energy Center In Texas
  • Toronto Shifts To LED Lighting As Answer For Energy Efficiency

  • Non-hospital MRSA More Deadly
  • Tibotec HIV Drug Shows Promise
  • Another Potential Cure For HIV Discovered
  • Three Cases Of H5N1 Bird Flu Confirmed In Germany

  • Bush administration accused of putting ideology above science
  • Trophy Hunting Buoyant Industry For Namibia
  • Patenting Mother Nature
  • Research Explores Link Between Pesticides And Colony Collapse Disorder

  • Indian Luxury Hotel Boss Calls For Major City Clean-Up
  • Studying The Garbage Of The Modern Ocean
  • Environmental Degradation A Growing Public Danger To People In China
  • Hong Kong Choked By Growing Pollution Problem

  • Researchers Find Evidence Of Very Recent Human Adaptation
  • Neutral Evolution Has Helped Shape Our Genome
  • Kenyan Tribe Of Honey-Hunters Fights Extinction
  • Russia Has Become A Nation Of Pensioners

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement