. Earth Science News .
SHAKE AND BLOW
Researchers catch extreme waves with higher-resolution modeling
by Staff Writers
Berkeley CA (SPX) Feb 17, 2017


Hurricanes are seen generating big waves within the high-resolution, 25-km model (right side). The large waves show up as bright, yellow and red spots. These storms and resulting waves are almost entirely absent in the low-resolution, 100-km model (left). Image courtesy Ben Timmermans and Michael Wehner/Berkeley Lab. Watch a video on the research here.

Surfers aren't the only people trying to catch big waves. Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) are trying to do so, too, at least in wave climate forecasts.

Using decades of global climate data generated at a spatial resolution of about 25 kilometers squared, researchers were able to capture the formation of tropical cyclones, also referred to as hurricanes and typhoons, and the extreme waves that they generate. Those same models, when run at resolutions of about 100 kilometers, missed the tropical cyclones and the big waves up to 30 meters high.

Their findings, published in the Feb. 16 issue of Geophysical Research Letters, demonstrate the importance of running climate models at higher resolution. Better predictions of how often extreme waves will hit are important for coastal cities, the military, and industries that rely upon shipping and offshore oil platforms. And, of course, for surfers.

"It's well known that to study tropical cyclones using simulations, the models need to be run at high resolution," said study lead author and postdoctoral fellow Ben Timmermans.

"The majority of existing models used to study the global climate are run at resolutions that are insufficient to predict tropical cyclones. The simulations in our study are the first long-duration global data sets to use a resolution of 25 kilometers. It's also the first time a study has specifically examined the impact of resolution increase for ocean waves at a global climatological scale."

The other authors on this study are Daith? Stone, Michael Wehner, and Harinarayan Krishnan. All authors are scientists in Berkeley Lab's Computational Research Division (CRD).

Zooming in to detect hurricanes
Climate models work by simulating the exchange of air, water, and energy between the grid "boxes." In today's state-of-the-art climate models, these boxes are typically 100 to 200 kilometers wide. That level of detail is good enough to catch the formation and movement of midlatitude storms, the researchers said, because such systems tend to be quite large.

In contrast, tropical cyclones tend to cover a smaller area. While the overall footprint of a hurricane can be broad, the eye of a hurricane can be very compact and well defined, the researchers noted.

"The problem with that 100-kilometer resolution is that it misses key details of the hurricanes and tropical cyclones, which are clearly relevant to the generation of extreme waves," said Stone. "But going to a 25-kilometer resolution data set is computationally challenging. It requires 64 times more computational resources than a 100-kilometer simulation."

The study relied upon the data-crunching power of the National Energy Research Scientific Computing Center (NERSC), a scientific computing user facility funded by the DOE Office of Science and based at Berkeley Lab.

The researchers ran the Community Atmosphere Model version 5 (CAM5) climate model with data collected in three-hour increments at a low resolution of 100 kilometers and at a high resolution of 25kilometers. They found that the high-resolution simulations included tropical cyclones where the low-resolution ones did not.

Crunching data to catch big waves
To see if the cyclones had an effect on waves, they then ran global wave models at both resolutions. They saw extreme waves in the high-resolution model that did not appear in the low-resolution ones.

"Hurricanes are tricky things to model," said Stone.

"We've shown the importance of using a high-resolution data set for producing hurricanes. But the characteristics of hurricanes could change with the climate. People are making projections of changes in ocean waves in a future, warmer world. It's not clear if the 25-kilometer resolution is sufficient for capturing all of the processes involved in the development of a hurricane. But we do know that it's better than 100 kilometers."

While additional high-resolution simulations of the future are on the way, the researchers were able to take a first look at possible conditions at the end of the 21st century. Wehner noted that the biggest waves in Hawaii are projected to be substantially larger in a much warmer future world.

The researchers added that this study only looked at averages of wind-generated waves. One-off "rogue" or "freak" waves cannot be reproduced in these kinds of models, and large waves such as tsunamis are very different since they are caused by seismological activity, not the wind.

The data from this study will be made freely available for use by the wider scientific community.

"In the same way that weather patterns are part of the climate, ocean wave patterns are also part of the 'wave' climate," said Timmermans. "Ocean waves are relevant to the interaction between the ocean and the atmosphere, which affects the planet's climate as a whole."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lawrence Berkeley National Laboratory
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SHAKE AND BLOW
Cyclone downgraded after wreaking havoc in Mozambique
Maputo (AFP) Feb 16, 2017
Mozambique was battered by high winds, flooding and sea surges when cyclone Dineo made landfall late Wednesday but the storm has begun to die down, according to meteorologists Thursday. Dineo reached Inhambane, southern Mozambique, between 8:00 pm and midnight on Wednesday, buffeting the town with winds in excess of 100 kmh (62 mph), torrential rain and rough seas, according to the South Afr ... read more


SHAKE AND BLOW
Bringing satellites to users can improve public health and safety

'Scorpion' robot mission inside Fukushima reactor aborted

Free hairdos to boost confidence of displaced Iraqi women

Myanmar jade mine landslide kills 9: official

SHAKE AND BLOW
Most stretchable elastomer for 3-D printing

After 15 years, SABER on TIMED Still Breaks Ground from Space

ANU scientists make new high-tech liquid materials

Curtiss-Wright offers COTS Module for measuring microgravity acceleration

SHAKE AND BLOW
Subsea mining moves closer to shore

10 Italian execs found guilty over polluted water supply

Seagrass on decline, jeopardizing human, coral health: study

El Nino resulted in unprecedented erosion of the Pacific coastline

SHAKE AND BLOW
How an Ice Age paradox could inform sea level rise predictions

Sentinels warn of dangerous ice crack

Sea ice at poles hit record low for January

Arctic cultures take climate fight to Berlin film fest

SHAKE AND BLOW
Stanford scientists measure African crop yields from space

Nicaragua focuses on climate-change resistant coffee

Study rewrites the history of corn in corn country

Mongolia herders reel under dreaded 'dzud' weather

SHAKE AND BLOW
Italy asks EU aid as cost of quakes hits 23 bn euros

Cyclone bears down on Mozambique coast

Ventura fault could cause stronger shaking

Cyclone downgraded after wreaking havoc in Mozambique

SHAKE AND BLOW
Interim authorities to begin work in Mali's north

S. Sudan army says general who quit was 'deeply' corrupt

UN demands armed groups stop fighting in C. Africa

Ivory Coast arrests six journalists over mutiny 'false information'

SHAKE AND BLOW
Study: The human brain always has a backup plan

Study links working remotely to more stress, insomnia

Chimpanzee feet allow scientists a new grasp on human foot evolution

Humans subconsciously perceive words as 'round' or 'sharp'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.