. Earth Science News .
Seafloor Buffet Keeps Hunger At Bay

Rocks made of basalt on and under the ocean bottom harbor surprising numbers of deep-sea bacteria.
by Staff Writers
Woods Hole MA (SPX) Jun 06, 2008
Seafloor bacteria on ocean-bottom rocks are more abundant and diverse than previously thought, appearing to "feed" on the planet's oceanic crust, according to results of a study reported in this week's issue of the journal Nature.

The findings pose intriguing questions about ocean chemistry and the co-evolution of Earth and life.

Once considered a barren plain dotted with hydrothermal vents, the seafloor's rocky regions appear to be teeming with microbial life, say scientists from the Woods Hole Oceanographic Institution (WHOI) in Woods Hole, Mass., University of Southern California (USC) in Los Angeles, and other institutions.

While seafloor microbes have been detected before, this is the first time they have been quantified. Using genetic analyses, Cara Santelli of WHOI, Katrina Edwards of USC, and colleagues found three to four times more bacteria living on exposed rock than in the waters above.

"Initial research predicted that life could in fact exist in such a cold, dark, rocky environment," said Santelli. "But we really didn't expect to find it thriving at the levels we observed."

Surprised by this diversity, the scientists tested more than one site and arrived at consistent results, making it likely, according to Santelli and Edwards, that rich microbial life extends across the ocean floor.

"This may represent the largest surface area on Earth for microbes to colonize," said Edwards.

"These scientists used modern molecular methods to quantify the microbial biomass and estimate the diversity of microbes in deep-sea environments," said David Garrison, director of the National Science Foundation (NSF)'s Biological Oceanography Program. NSF's Ridge 2000 program funded the research. "We now know that this remote region is teeming with microbes, more so than anyone had guessed."

Santelli and Edwards also found that the higher microbial diversity on ocean-bottom rocks compared favorably with other life-rich places in the oceans, such as hydrothermal vents.

These findings raise the question of where these bacteria find their energy, Santelli said.

"We scratched our heads about what was supporting this high level of growth," Edwards said.

With evidence that the oceanic crust supports more bacteria than overlying water, the scientists hypothesized that reactions with the rocks themselves might offer fuel for life.

In the lab, they calculated how much biomass could be supported by chemical reactions with the rocky basalt. They then compared this figure to the actual biomass measured. "It was completely consistent," Edwards said.

This discovery lends support to the idea that bacteria survive on energy from Earth's crust, a process that could add to our knowledge about the deep-sea carbon cycle and the evolution of life.

Many scientists believe that shallow water, not deep water, is better suited for cradling the planet's first life forms. Up until now, dark, carbon-poor ocean depths appeared to offer little energy, and rich environments like hydrothermal vents were thought to be relatively sparse.

But the newfound abundance of seafloor microbes makes it possible that early life thrived--and perhaps began--on the seafloor.

"If we can really nail down what's going on, there are significant implications," Edwards said. "I hope that people turn their heads and notice: there's life down there."

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
More at NSF
Water News - Science, Technology and Politics



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Pacific Coast Turning More Acidic
Corvallis OR (SPX) May 28, 2008
An international team of scientists surveying the waters of the continental shelf off the West Coast of North America has discovered for the first time high levels of acidified ocean water within 20 miles of the shoreline, raising concern for marine ecosystems from Canada to Mexico.







  • Outside View: The new China Syndrome
  • China orders coal plants to increase production for quake relief
  • Critical moment for China's 'quake lake', Wen warns
  • US warships with aid for Myanmar could depart soon: admiral

  • Food, oil crises should not overshadow climate danger: UN
  • Possible to slash CO2 emissions by 85 percent by 2050: NGO
  • Kiribati likely doomed by climate change: president
  • Inspector General Says NASA Political Appointees Mischaracterized Global Warming Findings

  • ISRO To Release Extensive Satellite Imagery By Year End
  • EarthCARE Earthcare Satellite Contract Signed
  • GeoEye Gets More Money From US
  • A New Satellite Remote Sensing Tool For Improving Agricultural Land Use Observation

  • Analysis: Nigerian militants plan attack
  • Demand for biofuels boosting food prices
  • Analysis: Iraq government shakes oil union
  • Analysis: BP's rough ride in Eurasia

  • New bird flu dangers investigated
  • China in emergency vaccination drive in quake-hit areas
  • Japan PM pledges 560 million dollars to fight diseases
  • Lab breakthrough seen in lethal dengue fever

  • Taking A Bath In The Gene Pool
  • New Family Of Gecko Discovered By Researchers From The U Of Minnesota And Villanova University
  • Real-Time Observation Of The DNA-Repair Mechanism
  • Scientists Reveal The Lifestyle Evolution Of Wild Marine Bacteria

  • Satellites Illuminate Pollution Impact On Clouds
  • Protesters allow experts in to potential new Naples-area dump
  • Naples officials sent illegal waste for dumping in Germany: probe
  • Sun screen lotion threatens coral: study

  • New Statistical Method Reveals Surprises About Our Ancestry
  • Mathematicians Reveal Secrets Of The Ancient And Universal Art Of Symmetry
  • Study Identifies Food-Related Clock In The Brain
  • Walker's World: Russia's 'hypermortality'

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement