. | . |
Seagrass is not a miracle solution against climate change by Staff Writers Geesthacht, Germany (SPX) Dec 17, 2021
To avert the worst consequences of climate change, humanity needs to considerably reduce the amount carbon dioxide (CO2), a greenhouse gas, in the atmosphere over the coming years. To this end, a common suggestion is to restore natural CO2 reservoirs on the coasts that have been destroyed in many locations during the past decades. This includes mangrove forests, salt marshes and what are known as seagrass meadows. Seagrasses are aquatic plants that thrive in shallow, light-flooded water and are anchored by their roots to the soft seabed. For many animal species, such as manatees that live in tropical waters, seagrass meadows are vital grazing grounds. At the same time, they serve as nurseries all over the world for numerous young fish. All of these plants absorb CO2 in order to develop their tissue. When these plants die, they become deposited in the sediment of the seabed. This is how a portion of the carbon dioxide, which the plants originally absorbed from the air, is stored in the sediment. The reforestation of mangrove forests and the regeneration of saline and seagrass meadows are now grouped under the term"blue carbon methods". These methods were originally meant to serve coastal protection and restoration of valuable ecosystems. As they are nature based, they are now considered by many scientists among the most vital measures to combat climate change.
Targeting tropical seagrass meadows Seagrass meadows are found on many coasts all over the world, including in Europe. They are most widespread in tropical regions. "By taking measurements in seagrass meadows off the coast of Florida, we could show that some of these tropical seagrass meadows absorb considerably less carbon dioxide than has long been thought," says Van Dam, who conducts his research at the Hereon Institute of Carbon Cycles. "In contrast, on some coasts, they even emit more CO2." This is because many chemical processes in the plants and in the sediment take place that other experts have so far neglected when calculating carbon dioxide uptake. "It depends on many different processes as to whether seagrass meadows actually help reduce carbon dioxide in the atmosphere. "
Dissolved carbonates play the main role In the warm tropical waters, however, this does not function as smoothly. The metabolic processes of the seagrass plants convert the dissolved carbonates to lime when it is warm. This lime then trickles to the seafloor. This results in the loss of carbonate, which would otherwise bind carbon dioxide. "The result is that these seagrass meadows hardly bind any carbon dioxide. On the contrary, they tend to release carbon dioxide through various other biochemical processes," explains Prof. Helmuth Thomas, an expert in biochemistry. Thomas is director of the Hereon Institute of Carbon Cycles and is coauthor of the current study.
Two methods combined for the first time Lastly, they used geochemical sampling to measure the many processes in the sediments which act together to consume or produce CO2. "Really, the novel aspect of this study is that we were able to combine all of these approaches together at the same place and at the same time," says Bryce Van Dam. "By linking measurements in the sediment with related measurements in the water and in the air, we were able to track and account for the important processes that drive the ecosystem toward storing or releasing CO2."
First analyze, then distribute funds In addition to the Helmholtz-Zentrum Hereon, researchers from the following establishments contributed to the study: The Leibniz Institute for Baltic Sea Research, Warnemunde; Florida International University; University of Florida; and North Carolina State University.
Research Report: "Calcification-driven CO2 emissions exceed "Blue Carbon" sequestration in a carbonate seagrass meadow"
Vulnerable to climate change, New York constructs seawall New York (AFP) Dec 14, 2021 After major storms highlighted New York's weaknesses in the face of climate change, the city is erecting a $1.45-billion system of walls and floodgates to protect it from rising sea levels. Superstorm Sandy in 2012 was the trigger for establishing the East Coast Resiliency Project (ESCR), running 2.5 miles (four kilometers) along the shoreline of Lower Manhattan. Hurricane Ida, which ravaged parts of the city this year, added further urgency. During Sandy, which killed 44 city residents while im ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |