. | . |
Seismologists find possible early warning sign of a pending megaquake by Brooks Hays Washington (UPI) May 29, 2019 Geologists have found a possible early signature of massive earthquakes. New research suggests the telltale seismic pattern shows up between 10 seconds and 15 seconds into a seismic event. Scientists discovered the warning sign after analyzing GPS records of peak ground displacement during dozens of earthquakes. The analysis of several GPS databases revealed a point in time when the beginnings of an earthquake takes the form of a "slip pulse," the mechanical functions of which scale with magnitude. The discovery, published this week in the journal Science Advances, allowed scientists to differentiate between small- to medium-sized earthquakes and large to extra-large quakes. "To me, the surprise was that the pattern was so consistent," Diego Melgar, a professor of earth sciences at the University of Oregon, said in a news release. "These databases are made different ways, so it was really nice to see similar patterns across them." Researchers identified the displacement acceleration signature between 10 seconds to 20 seconds into the beginnings of 12 major earthquakes occurring between 2003 and 2016. Though GPS instruments aren't regularly used for earthquake warning systems, they are already present along many land-based faults around the world. GPS instruments are positioned along several fault lines connected to the massive Cascadia subduction zone located off the coast of the Pacific Northwest. "We can do a lot with GPS stations on land along the coasts of Oregon and Washington, but it comes with a delay," Melgar said. "As an earthquake starts to move, it would take some time for information about the motion of the fault to reach coastal stations. That delay would impact when a warning could be issued. People on the coast would get no warning because they are in a blind zone." Melgar and other geologists in both the United States and Japan are currently considering innovative ways to monitor fault movements on the seafloor. An earlier study by Melgar determined such data could add an additional 20 minutes of warning time for a possible tsunami.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |