. Earth Science News .
ABOUT US
Shining light on brain tumors
by Staff Writers
Washington DC (SPX) Apr 22, 2016


Tissue from a patient diagnosed with low-grade glioma. The green image is taken with the new method, while the pink uses conventional hematoxylin and eosin staining. Going from the upper left to the lower right, both images show increasing cell density due to more tumor tissue. The insets reveal the high density of tumor cells. Image courtesy N.V. Kuzmin et al, VU University Amsterdam, The Netherlands. For a larger version of this image please go here.

When operating on cancer, surgeons want to remove tumors and not healthy tissue. This is especially important and challenging when dealing with brain tumors, which are often spread out and mixed in with the healthy tissue.

Now, researchers have shown that a well-established optics technique can reveal exactly where brain tumors are, producing images in less than a minute - unlike conventional methods that can take a whole day.

"The special thing about our images is that we showed they contain so much information," said Marloes Groot of VU University Amsterdam, Netherlands. "When I showed these images to the pathologists that we work with, they were amazed." Groot and her colleagues describe their work in the journal Biomedical Optics Express, from The Optical Society.

Pathologists typically use staining methods, in which chemicals like hematoxylin and eosin turn different tissue components blue and red, revealing its structure and whether there are any tumor cells. But for a definitive diagnosis this process can take up to 24 hours, which means surgeons may not realize some cancerous tissue has escaped from their attention until after surgery - requiring a second operation and more risk.

But with the new technique, the researchers don't use any labeling or staining at all. Instead, they fire short, 200-femtosecond-long laser pulses into the tissue, and when three photons converge at the same time and place, the photons interact with the nonlinear optical properties of the tissue. Through well-known phenomena in optics called second and third harmonic generation, these interactions produce a single photon.

The key is that the incoming and outgoing photons have different wavelengths. The incoming photons are at 1200 nanometers, long enough to penetrate deep into the tissue. The single photon that is produced, however, is at 600 or 400 nanometers, depending on if it's second or third harmonic generation.

The shorter wavelengths mean the photon can scatter in the tissue. The scattered photon thus contains information about the tissue, and when it reaches a detector, in this case a high-sensitivity GaAsP photomultiplier tube, it reveals what the tissue looks like inside.

While other researchers have exploited this technique for other applications - to make images of insects and fish embryos, for example - this is the first time anyone has used it to analyze glial brain tumors.

These tumors are particularly deadly because it's hard to get rid of tumor cells by surgery, irradiation, and chemotherapy without substantial collateral damage to the surrounding brain tissue.

The researchers tested their method on samples of glial brain tumors from humans, finding that the histological detail in these images was as good - if not better - than those made with conventional staining techniques.

They were able to make most images in under a minute. The smaller ones took less than a second, while larger images of a few square millimeters took five minutes. "This makes it possible to do it in real time in the operating room," Groot said.

Now that they've shown their approach works, the researchers are developing a hand-held device that a surgeon can use to identify a tumor's border during surgery. The incoming laser pulses can only reach a depth of about 100 micrometers into the tissue. To reach farther, Groot envisions attaching a needle that can pierce the tissue and deliver photons deeper.

"With our technique it's potentially possible to diagnose not only during an operation but possibly before surgery," she said.

Research paper: N. V. Kuzmin, P. Wesseling, P. C. de Witt Hamer, D. P. Noske, G. D. Galgano, H. D. Mansvelder, J. C. Baayen, and M. L. Groot, "Third harmonic generation imaging for fast, label-free pathology of human brain tumors," Biomed. Opt. Express 7, 1889-1904 (2016). DOI: 10.1364/BOE.7.001889.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ABOUT US
Bigger brains led to bigger bodies in our ancestors
New York NY (SPX) Apr 20, 2016
New research suggests that humans became the large-brained, large-bodied animals we are today because of natural selection to increase brain size. The work, published in the journal Current Anthropology, contradicts previous models that treat brain size and body size as independent traits responding to separate evolutionary pressures. Instead, the study shows that brain size and body size ... read more


ABOUT US
30 years on, Russia's Chernobyl victims say they have been abandoned

Lessons of Chernobyl disaster, 30 years on

Ecuador's president announces economic measures in wake of killer quake

NATO warns migrant smugglers 'shifting routes rapidly'

ABOUT US
Thanks, actin, for the memories

Generation of tailored magnetic materials

Using methane rather than flaring it

Progress of simulating dynamics in heterogeneous materials

ABOUT US
Island states come to UN ready to move on climate deal

Underwater 'zombie grass' signals trouble for Florida fishermen

Severe reduction in thermal tolerance projected for Great Barrier Reef

Criminal charges filed in Flint tainted water scandal

ABOUT US
China spurs ships to use Arctic shipping route: report

Nansen gives birth to two icebergs

Ice streams can be slowed down by gas hydrates

Satellite images reveal dramatic tropical glacier retreat

ABOUT US
The P tax cometh

A cellular sensor of phosphate levels

China wields increasing power in world wine market: study

Australia's biggest cattle firm says China-led bid preferred

ABOUT US
New quake rattles jittery Ecuador

South American floods kill 12, force mass evacuations

Southern Africa drought triggers DR Congo food shortage

Record Balkan floods linked to jamming of giant airstreams

ABOUT US
Burundi gunmen murder military officer: witness, army

Fighting for peace in South Sudan

South Sudan rebel delay fans fears for peace

South Sudan rebel homecoming fails again

ABOUT US
How the brain consolidates memory during deep sleep

Bigger brains led to bigger bodies in our ancestors

Are humans the new supercomputer

Brain observed filing memories during sleep









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.