. Earth Science News .
WATER WORLD
Shrinking snowcaps fuel harmful algal blooms in Arabian Sea
by Staff Writers
New York NY (SPX) May 05, 2020

Noctiluca blooms in the Arabian Sea, as seen from space.

A uniquely resilient organism all but unheard of in the Arabian Sea 20 years ago has been proliferating and spreading at an alarming pace, forming thick, malodorous green swirls and filaments that are visible even from space. This unusual organism is Noctiluca scintillans--a millimeter-size planktonic organism with an extraordinary capacity to survive, thrive and force out diatoms, the photosynthesizing plankton that have traditionally supported the Arabian Sea food web.

Noctiluca is not a preferred food for larger organisms, so these large blooms, recurring annually and lasting for several months, are disrupting the base of the region's marine food chain, threatening fisheries that sustain 150 million people, and possibly exacerbating the rise of criminal piracy in the region.

New research published this week in Nature's Scientific Reports describes how the continued loss of snow over the Himalayan-Tibetan Plateau region is fueling the expansion of this destructive algal bloom. Led by Joaquim I. Goes from Columbia University's Lamont-Doherty Earth Observatory, the study uses field data, laboratory experiments, and decades of NASA satellite imagery to link the rise of Noctiluca in the Arabian Sea with melting glaciers and a weakened winter monsoon.

Normally, cold winter monsoon winds blowing from the Himalayas cool the surface of the oceans. These colder waters sink and are replaced with nutrient-rich waters from below. This convective mixing is no different than putting an ice cube into a mug of hot coffee. During this time, phytoplankton, the primary producers of the food chain, thrive in the sunlit, nutrient-rich upper layers, and surrounding countries see a bounty of fish that feed directly or indirectly on the phytoplankton.

But with the shrinking of glaciers and snow cover in the Himalayas, the monsoon winds blowing offshore from land are warmer and moister, resulting in diminished convective mixing and decreased fertilization of the upper layers.

In this scenario, phytoplankton such as diatoms are at a disadvantage, but not Noctiluca. Unlike diatoms, Noctiluca (also known as sea sparkle) doesn't rely only on sunlight and nutrients; it can also survive by eating other microorganisms. Noctiluca hosts thousands of photosynthesizing endosymbionts within its bulbous, transparent, greenhouse-like cell. The green endosymbionts provide it with energy from photosynthesis, while its tail-like flagella allows it to grab any microscopic plankton from the surrounding water as an additional source of food.

This dual mode of energy acquisition gives it a tremendous advantage to flourish and disrupt the classic food chain of the Arabian Sea. Noctiluca's second advantage is that its endosymbionts accumulate a lot of ammonia in the cell, making the organism unpalatable to larger grazers. As a third advantage, the accumulated ammonia is also a repository of nitrogenous nutrients for the endosymbionts, making them less vulnerable to diminishing inputs of nutrients from a weakened convective mixing.

Noctiluca blooms first appeared in the late 1990s. The sheer size of their blooms, which occur annually, threaten the Arabian Sea's already vulnerable food chain because its symbionts not only compete with phytoplankton for the annually replenished nutrients, but feed on the phytoplankton themselves.

However, only jellyfish and salps seem to find Noctiluca palatable. In Oman, desalination plants, oil refineries and natural gas plants are forced to scale down operations because they are choked by Noctiluca blooms and the jellyfish that swarm to feed on them. The resulting pressure on the marine food supply, and economic security may also have fueled the rise in piracy in countries like Yemen and Somalia.

"This is probably one of the most dramatic changes that we have seen that's related to climate change," said Goes who, along with Lamont researcher Helga do Rosario Gomes, has been studying the rapid rise of this organism for more than 18 years. "We are seeing Noctiluca in Southeast Asia, off the coasts of Thailand and Vietnam, and as far south as the Seychelles, and everywhere it blooms it is becoming a problem. It also harms water quality and causes a lot of fish mortality."

The study provides compelling new evidence of the cascading impacts of global warming on the Indian monsoons, with socio-economic implications for large populations of the Indian sub-continent and the Middle East.

"Most studies related to climate change and ocean biology are focused on the polar and temperate waters, and changes in the tropics are going largely unnoticed," said Goes.

The study highlights how tropical oceans are being disproportionately impacted, losing their biodiversity, and changing faster than conventional model predictions. This may portend dire consequences over the long term for countries in the region already gripped by socioeconomic problems from war, poverty and loss of livelihoods, said Goes.


Related Links
Earth Institute At Columbia University
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Life is bubbling up to seafloor with petroleum from deep below
Woods Hole MA (SPX) May 04, 2020
The COVID-19 pandemic is a stark reminder that we move through a world shaped by unseen life. Bacteria, viruses, and other microscopic organisms regulate the Earth's vital functions and resources, from the air we breathe to all our food and most of our energy sources. An estimated one-third of the Earth's microbes are literally hidden, buried in sediments deep below the ocean floor. Now, scientists have shown that these "deep biosphere" microbes aren't staying put but are bubbling up to the ocean ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Balcony protests and e-rallies as epidemic curtails May Day demos

Canada invests in online mental health care amid COVID-19 crisis

Swiss soldiers fight COVID-19 armed with Bluetooth app

New York's homeless flock to empty subway trains

WATER WORLD
Scientists discover just how runny a liquid can be

Papua New Guinea seizes Barrick, Zijin gold mine

'Animal Crossing' offers digital getaway under lockdown

Sustainable structural material for plastic substitute

WATER WORLD
Nearly 100,000 evacuated after Uzbekistan dam bursts

Ocean acidification prediction now possible years in advance

CO2 emissions from dry inland waters globally underestimated

Life is bubbling up to seafloor with petroleum from deep below

WATER WORLD
Seal behavior helps scientists predict changes in Antarctic krill distribution

NASA space laser missions map 16 years of ice sheet loss

Arctic bird turns down immune system to conserve energy in winter

Glacier detachments: A new hazard in a warming world?

WATER WORLD
Honey bees face chronic paralysis pandemic in Britain

Virus helps infected bees slip past the guards of healthy hives

UAE wages war on tiny scourge threatening date palms

Amazonians go hungry despite living in one of the most biodiverse places on Earth

WATER WORLD
'Wobble' may precede some great earthquakes, study shows

Strong earthquake strikes off Crete, no casualties

New study finds connection between fault roughness and the magnitude of earthquakes

New Zealand volcano disaster victims to sue cruise ship firm

WATER WORLD
S.Africa to deploy 73,000 more troops for lockdown

Madagascar president launches coronavirus 'remedy'

Cameroon admits army role in February killing of 13 civilians

Lesotho's army withdraws as calls mount for PM to resign

WATER WORLD
Evidence of Late Pleistocene human colonization of isolated islands beyond Wallace's Line

Commuter data helps scientists define metropolitan boundaries

Study reveals rich genetic diversity of Vietnam

Diverse livelihoods helped resilient Levanluhta people survive a climate disaster









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.